

HSD2 Series Servo Drive User Manual

HNC Electric Limited

I

Thank you for purchasing our HSD2 AC servo drives.

This manual provides the related information about product installation, wiring, inspection and operation of our AC servo drive. Before using the product, please read through this manual carefully in order to ensure the correct use of the product.

This manual includes:

Installation of AC servo drives Configuration and wiring Parameter settings Control functions and adjusting methods of AC servo drives Trial run steps Troubleshooting

This manual is intended for the personnel with the following qualifications:

Installation or wiring personnel

Operating or programming personnel

Troubleshooting personnel

Important Precautions

Before using the product, please read this user manual thoroughly to ensure correct use and place this manual in a safe place for a quick reference whenever is needed. In addition, please pay your attention to the following precautions accordingly:

No water, corrosive and inflammable gas are allowed in the installation environment.

Ensure that the drive is correctly connected to a ground. The grounding method must comply with the electrical standard of the country.

Do not connect a commercial power supply to the U,V,W terminals of drives, it may damage the drive.

Do not disconnect servo drive, motor or change the wiring when power is ON

Do not touch the heat sink of the drive before connecting to the power and operation.

If you have any inquiries, please contact your local distributor or our customer service center.

Preface

Please read and follow the following NOTES before using the product:

- 1. HSD2 series driver is designed to apply with AC 220V power input. Do not connect this product with AC 380V power, it's possible to damage the drive or cause personnel injury.
- 2. Please refer to this user manual, set the correct motor parameters PA1, so as to ensure proper parameters match between servo drive and motor.
- HSD2 supports 5V signal for PULS/SIGN. If the control voltage is 24V, please connect 1.2k Ω resistance in series on PULS+(26)/SIGN+(24), otherwise the diver will be damaged; if the control voltage is 12V, please connect 500 Ω resistance.
- 4. Do not turn the power on and off too often, if continuous power on and off is needed, please add break resistor. Please follow the user manual or contact our technical support, use the correct break resistor for the driver.
- 5. Please set the right Electronic Gear Ratio parameter PA12, PA13.
- 6. Please set the right pulse command input parameter PA14.
- 7. When you finished the parameters setting of PA1,PA14, PA35, please re-power the drive to activate and save the modified settings.
- 8. Please use stranded wires and multi-core shielded-pair wires for making the encoder cable. The total length should not exceed 15meters.
- 9. Please use shielded wires to make control cable as well, and the max length of the control cable is 15meters, otherwise it may cause pulse lose.

Safety Precautions

Installation

◆It is not allowed to expose the product with the environment which contains water, corrosive gas, inflammable gas, etc.Otherwise it may result in electric shock, fire or personal injury.

◆Do not apply the product to the environment of direct sunlight,dust,salt and metal powder,etc.

◆It is prohibited to apply this product to the place which contains oil and pharmaceuticals, etc.

Wiring

Please connect the ground terminals to a class-3 ground system (Under 100 Ω),poor grounding may result in electric shock or fire.

◆ The HSD2 series AC servo drive is applicable for AC 220V single-phase or three-phase power. Please do not connect the product to AC 380V power. Otherwise it's may lead to possible drive damage..

◆ Do not connect the three-phase source to the output terminal U, V

and W. Or it is possible to cause personnel injury or fire, or damage the drive.

◆Please tighten the screws of the power, wire terminals & connectors of the motor and drive, otherwise it may result in damage, fire or personnel injury.

◆In order to prevent any danger, it is strongly recommended to follow the specifications outlined in this manual when wiring.

Operation

◆Before the operation, please change the parameter setting value according to the requirement, if it is not properly adjusted to the correct setting value, it may cause equipment out of control, or lead to malfunction of the machine.

◆Do not touch or approach any rotating parts (e.g. Heat sink) during operation, it may cause serious personnel injury.

◆Do not remove /disconnect the operation panel while the drive is connected to the power supply, otherwise, it is possible to cause electric shock.

◆Do not disassemble the servo drive as this may cause electric shock or personnel injury.

◆Do not connect or disconnect wires or connectors while power is on, otherwise it may cause electric shock or personnel injury.

The high voltage may still remain in the servo drive when the power is off, please wait for at least 10 minutes (after power is off) before touching or

performing any inspections.

Contents

CHAPTER 1	PRODUCT DESCRIPTION	1
1.1 HSD2 Se	RIES SERVO DRIVES	
1.2 APPEARA	NCE	
1.3 Explana	TION OF EACH POWER TERMINALS	2
1.3.1 P / D	/ C terminals	2
1.3.2 R / S	/ T terminals	2
1.3.3 R / T	terminals	
1.3.4 U / V	/ / W / PE terminals	3
1.3.5 CN1	connector	
1.3.6 CN2	connector	
1.3.7 CN3	connector	
CHAPTER 2	INSTALLATION & WIRING	4
2.1 Pre-chec	CK BEFORE INSTALLATION	4
	Size	
	A FOR INSTALLATION	
	TION ENVIRONMENT	
	TION PROCEDURE & MINIMUM CLEARANCES	
2.6 CONNECT	ION TERMINALS	9
CHAPTER 3 S	SIGNAL INTERFACE AND WIRING	
3.1 OVERVIEW	N	
3.2 CN1 Enc	ODER CONNECTOR	
3.2.1 CN1	connector view and layout	
3.2.2 Signa	al definition for CN1	
3.3 CN2 CON	INECTOR VIEW AND LAYOUT	
3.4 SIGNAL D	DEFINITION OF CN2 CONNECTOR	
	RFACE	
e	al signal input interface	
3.5.2 Digit	al signal output interface	
	command input interface	
	og signal input interface	
	der signal output interface	
	der open-collector Z-pulse output interface	
	der feedback signal input interface	
	D CONNECTION EXAMPLE	
	ion control mode	
3.6.2 Speed	d / torque control mode	22
CHAPTER 4	PANEL DISPLAY & OPERATION	23
4.1 PANEL DE	ESCRIPTION	23

4.2 Main Menu	
4.3 Monitoring Display (DP)	
4.4 PARAMETER SETTING (PA)	
4.5 PARAMETER MANAGEMENT (EE)	
4.6 Speed Trial Run Without Load (Sr)	
4.7 JOG TRIAL RUN WITHOUT LOAD (JR)	
4.8 ANALOG ZERO-OFFSET ADJUSTMENT (AU)	
CHAPTER 5 TRIAL RUN AND TUNING	29
5.1 Inspection Without Load	
5.1.1 Apply power to the drive	
5.1.2 JOG trial run without load	
5.1.3 Speed trial run without load	
5.2 Position Control Mode	
5.2.1 Simple position control system	
5.2.2 Parameters for the position control	
5.2.3 Electronic gear ratio	
5.2.4 Position control gain	
5.3 GAIN ADJUSTMENT	40
5.3.1 Steps for gain adjustment	41
5.3.2 Gain adjustment for speed control loop	41
5.3.3 Gain adjustment for position control loop	
5.4 Electromagnetic Brake	
5.4.1 Parameters of electromagnetic brake	
5.4.2 Wiring of electromagnetic brake	
5.5 TIMING	
5.5.1 Timing for power supply	
5.5.2 Timing for enable operation	
5.5.3 Servo enable & servo alarm flowchart	
5.6 Start & Stop	
5.6.1 On-off frequency and load inertia	
5.6.2 Adjustment Method	
CHAPTER 6 PARAMETERS	
6.1 Parameter Summary	
6.2 DETAILED PARAMETER DESCRIPTION	
CHAPTER 7 MOTOR TYPE MATCHING	
7.1 MOTOR TYPE LIST FOR HSD2-020	
7.2 MOTOR TYPE LIST FOR HSD2-030	
7.3 MOTOR TYPE LIST FOR HSD2-050	
7.4 MOTOR TYPE LIST FOR HSD2-065	

CHAPTER 8	ALARM, PROTECTION FUNCTION & TROUBLESHOOTING	. 71
8.1 Alarm	Code Check List	.71
8.2 Potenti	AL CAUSE AND CORRECTIVE ACTIONS	.73
CHAPTER 9	CONNECTION TO MOTOR	.78
CHAPTER 10	SYSTEM CONNECTION	.79

Chapter 1 Product Description

1.1 HSD2 Series Servo Drives

HSD2 series drives include four different models: HSD2-020, HSD2-030, HSD2-050, HSD2-065.

Except for HSD2-050, which has a barrier screw secure terminal, the rest of above mentioned models have pinhole type power terminals (P / D / C, R / S / T, r / t, U / V / W / PE)

CN1, CN2, CN3 are signal connectors.

Please refer to the power level table (1-1) for each HSD2 series servo drives:

TYPE	IPM (A)	POWER LEVEL (kw)
HSD2-020	20	1.0
HSD2-030	30	1.5
HSD2-050	50	2.5
HSD2-065	65	3.5

Table 1-1 Power level of HSD2 series drivers

1.2 Appearance

The appearance of HSD2-030, HSD2-065 are the same. They have designed with P/D/C, R/S/T/r/t terminals and CN1, CN2, CN3 connectors..

HSD2-020 doesn't have P / D / C terminals and CN3 connector.

HSD2-050 use barrier screw secure terminals.

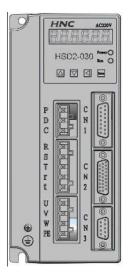


Figure 1-1 appearance of HSD2

1.3 Explanation of Each Power Terminals

1.3.1 P / D / C terminals

- 1. P / D / C are the wiring terminals of brake resistor.
- 2. It is prohibited to connect P and C directly, this will damage the drive.
- 3. When P and D is connected, it means the inner brake resistor is effective, the default setting is P and D being connected.
- 4. If an extra break resistor is needed, it will be connected between P and C.
- 5. If P and D is connected, an extra external break resistor is connected between P and C, both the internal and external resistors are working on a parallel basis.

1.3.2 R / S / T terminals

R / S / T are the three phased AC 220V power supply connection terminals, no phase sequence requirement.

Do not connect AC 380V power supply to the R/S/T terminals, otherwise it will damage the drive and cause personnel injury.

1.3.3 R / T terminals

R/T are the power supply terminals for the control system of the servo drive, AC 220V power supply is required in this case.

It will cause damages to the drive if you connect AC 380V power supply to these two terminals.

1.3.4 U / V / W / PE terminals

U / V / W / PE are the power output terminals of the drive, they can be connected to the corresponding ports of the servo motor.

The power cable is generally supplied by the manufacturer, if you need to make the power cable by yourself, please make sure you use the right shielded wire and ensure a correct connection of U / V / W / PE terminals to avoid loosing control of the drive.

Please follow up the instructions from table 2-3 and table 2-4.

1.3.5 CN1 connector

CN1 is the encoder signal interface, it's used to receive position signals from servo motor.

Only incremental encoder is applicable to our HSD2 series servo drive.

Incremental encoder has 6 signals: U V W A B Z, adopting differential output for each signal. The encoder resolution is 2500 PPR, please find the detailed definitions from table 3-1.

1.3.6 CN2 connector

CN2 is the control signal interface, detailed definitions, please refer to table 3-2.

1.3.7 CN3 connector

CN3 is the communication interface, it is a reserved port at the time being.

Chapter 2 Installation & Wiring

In this chapter, you will find the related information and cautions for storage, installation environment, wiring of HSD2 series servo drive.

1. If the driver is severely damaged during transportation, please do not power on the drive, contact the supplier for further actions.

2. Do not connect AC 380V power supply to R/S/T terminals.

3. Please ensure PE port is properly connected and earthed.

2.1 Pre-check Before Installation

After receiving the AC servo drive, please check for the following:

Ensure that the product is what you have ordered.

Please check the nameplate to identify if the product you received is what you've ordered from the supplier. (You can refer to Section 1.1 and 1.3 for more details about the model explanation).

Check the appearance to see if there is any damage.

Please inspect the product carefully to see whether or not there is any damage during transportation or shipping. Turn the motor shaft by hand, a smooth rotation indicates a good motor. However, a servo motor with an electromagnetic brake can not be rotated manually.

Check the screws

Ensure that all necessary screws are tightened and secured.

If any items are damaged, please inform the distributor whom you purchased the product from or your local sales representative.

2.2 Product Size

Product size of HSD2 series servo drives, please refer to Figure 2-1 and table 2-1.

Figure 2-1 Dimensions sketch

Table 2-1	size details of HSD2 series drives

Туре	C(mm)	D (mm)	E(mm)	Heat sink depth(mm)
HSD2-020	170	77	172	16
HSD2-030	185	82	182	21
HSD2-050	185	86	218	23
HSD2-065	215	105	207	29.5

2.3 Size Data for Installation

Please refer to the installation size from Figure 2-2 and Table 2-2.

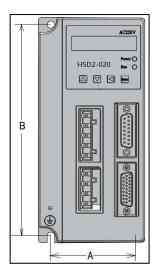


Figure 2-2 installation size sketch

Installation size data				
Туре	A(mm)	B(mm)		
HSD2-020	60	160		
HSD2-030	65	175		
HSD2-050	75	175		
HSD2-065	88	203.5		

2.4 Installation Environment

The operating temperature for the HSD2 series servo drive is ranging from $0^{\circ}C$ (32°F) to 55°C (131°F). If the ambient temperature of servo drive is higher than 45°C, please install the drive in a well-ventilated location and do not block the ventilation holes. The ambient temperature of servo drive for long-term reliability should be under 45°C (113°F).

If you need to install the servo drive and motor in a confined space, please ensure sufficient space around the units and make sure the ventilation status and size of the confined space won't cause overheating of the product. In addition, please also pay your attention to the following cautions:

1. The ambient humidity should be less than 80%, without condensing.

2. Please keep the servo drive or motor away from the heat-radiating equipment or in direct sunlight.

3. Do not install the drive or motor in a location subjected to the environment which contains water, corrosive gas or liquid, dust or oily dust, floating dust, metallic particles.

4. Do not mount the servo drive or motor in the places where it will be subjected to high levels of electromagnetic radiation.

5. Do not mount the servo drive or motor in a location where temperature and humidity will exceed specification.

6. Do not mount the servo drive or motor in a location where vibration and shock will exceed specification.

7. The mounted position vibration should be less than 0.5G.

2.5 Installation Procedure & Minimum Clearances

Incorrect installation may result in a drive malfunction or premature failure of the drive. Please follow the guidelines in this manual when installing the servo drive.

1. The servo drive should not be tilted or upside down. Please mount the drive perpendicular to the wall or in the control panel, otherwise malfunction and damage will occur.

2. The servo drive should be mounted in the control panel with a cooling fan, to enhance air circulation and cooling.

3. In order to ensure the drive is well ventilated, ensure that the all ventilation holes are not obstructed and sufficient free space is given to the servo drive. To define the free space, please refer to the section "Minimum Spacing".

4. Please tighten the screws for securing drive or motor. Otherwise it may result in product damage or personnel injury.

5. As the drive conducts heat away via the mounting, the mounting plane or surface should not bring heat into the drive from external sources.

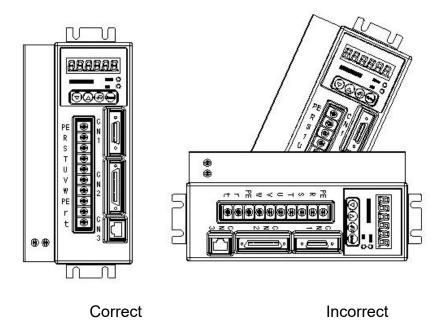


Figure 2-3 The correct direction for mounting

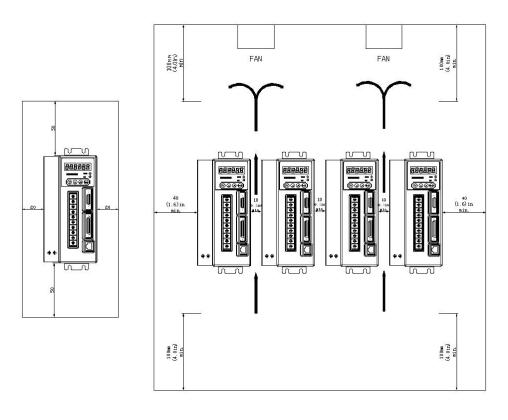


Figure 2-4 Installation Minimum Spacing

In order to increase ventilation to avoid ambient temperature being exceed to specification, please install a fan. A minimum spacing of two inches must be maintained above and below the drive for ventilation and heat dissipation. Additional space may be necessary for wiring and cable connections. When installing two or more drives next to each other, please follow the spacing diagram from the above Figure 2-4.

2.6 Connection Terminals

Please select the connecting terminals carefully and follow the instructions from table 2-3 and 2-4.

Terminal Identification	Terminal Description	Descriptions			
R、S、T	Main circuit terminal	Used to connect three-phase AC main circuit power depending on connecting servo drive model.			
R _v t	Control circuit terminal	Used to connect single-phase AC control circuit power. (Control circuit uses the same voltage as the main circuit.)			
		Used	to connect ser	vo motor	
			Terminal symbol	Wire colour	
U、V、W、PE	Servo motor		U	Brown	
	output		V	Black	
			W	Grey	
			DE	Yellow and	
			PE	green	
PE	Ground	Used to connect with the grounding wires of			res of
PE	terminal	powe	r supply and se	ervo motor.	
CN1	Encoder connector	Used to connect with the encoder of servo motor. Please refer to section 3.2 for more details.			
CN2	I/O connector	Used to connect with external controllers. Please refer to section 3.3 for more details.			
CN3	Communication connector (Reserved)	Connect with personal computer (PC or laptop).			

Table 2-3 Definition and function of the terminals

Terminal Identification	Terminal Description	Cable specification
R, S, T	Main circuit terminal	1.5~2.5mm ²
r⊾ t	Control circuit terminal	0.75~1 mm²
U, V, W	Servo motor output	1.5~2.5 mm ²
PE	Ground terminal	1.5~2.5 mm ²
CN1	Encoder connector	≥0.14 mm², 7 pair shielded twisted-pair cable
CN2	I/O connector	≥0.14 mm², shielded twisted-pair cable

Table 2-4 Cable specifications for the terminals

Wiring Cautions

Please read and follow up the below wiring precautions while performing wire connections with the servo drive and servo motor.

1. Please ensure that the wiring of the main power supply terminal R/S/T and control power supply terminal R/T are properly selected and connected, power specification is correct.

2. Please use shielded twisted-pair cables for wiring to voltage coupling and eliminate electrical noise and interference.

3. Please ensure a correct connection for U, V, W terminals, or it may not be able to start the motor or cause galloping.

4. The ground terminal of the servo motor should be connect with the PE of the servo drive properly and ensure a single point grounding. The grounding cable requires to be coarse as well.

5. As a residual hazardous voltage may remain inside the drive, please do not touch any of the terminals (R, S, T, & U, V, W) or the cables connected to them after the power has just been turned off. Wait for at least 10 minutes until the charging light is off before you take any further actions with the drive.

6. With regards to the I/O signal cable, please use the recommended cable or similar shield cable. The total length of I/O signal cable shouldn't exceed 3 meters, while encoder cable should be less than 15 meters. Please use a twisted-shield signal wire with grounding conductor for the encoder cable (CN1) and the position feedback signal connector (CN2). The wire length shouldn't exceed 20meters. If it exceeds 20m, please choose a bigger wire diameter (double the existing one) of signal cable to reduce the signal fading.

7. The shield of shielded twisted-pair cables (encoder cable) should be connected to the SHIELD end (ground terminal) of the servo drive.

8. The cables which connected to R, S, T and U, V, W terminals should be placed in separate conduits from the encoder or other signal cables. Separate them by at least 30cm.

9. Please ensure the diode connecting direction of signal output relay is correct, otherwise it may lead to malfunction of the drive.

10. Please install a non fuse type circuit breaker (NFB) to achieve external power cut offs when the servo drive is in a malfunction status.

11. Shut down the power supply if the servo drive is not being used for a long term.

12. Definition of rotating directions: face the motor shaft, the counter-clockwise direction is defined as the CCW. And the clockwise direction of rotation is defined as the CW. Generally, we refer the CCW as the positive direction, while CW as negative direction.

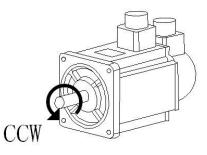


Figure 2-5 Definition of rotating directions

Chapter 3 Signal Interface And Wiring

CN1, CN2, CN3 are the signal interfaces of the servo drive, while CN3 is the communication port, (reserved).

This chapter provides the definitions and standard wiring/connections for the three ports.

3.1 Overview

- 1. CN1 is an encoder connector, used for receiving position signals from servo motor.
- 2. HSD2 series servo drive is only applicable with incremental optical encoder(resolution 2500ppr)
- 3. Incremental optical encoder includes 6 signals: U V W A B Z respectively. It adopts differential encoder signal output(15-line output generally).
- 4. CN2 is the I/O connector, used to receive control signal from the controller, and output the feedback signal to the controller by return.
- 5. Control signal generally include pulse command signal: PULS+, PULS-, and direction signal: SIGN+, SIGN-, analog speed command signal :AS+, AS-, drive signal: SON etc.
- 6. The feedback signal include encoder signal: A+, A-, B+, B-, Z+, Z-, Z ;signal OC, output signal :CZ, servo drive alarm signal: ALM,COIN,BRK etc.

3.2 CN1 Encoder Connector

3.2.1 CN1 connector view and layout

CN1 is the encoder connector for the motor, which named as DB26M.Please refer to the layout from the below Figure 3-1.

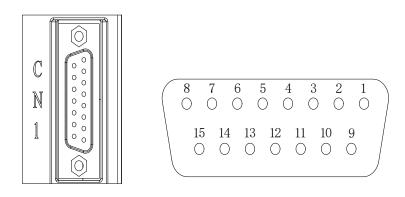


Figure 3-1 The view and layout of the CN1 encoder connector interface

3.2.2 Signal definition for CN1

PIN No.	Identification	Description
1	A+	Encoder signal A+
9	A-	Encoder signal A-
2	B+	Encoder signal B+
10	B-	Encoder signal B+
3	Z+	Encoder signal Z+
11	Z-	Encoder signal Z+
14	U+	Encoder signal U+
6	U-	Encoder signal U-
13	V+	Encoder signal V+
5	V-	Encoder signal V-
4	W+	Encoder signal W+
12	W-	Encoder signal W-
7	+5V	Power supply 5V
8	GND	GND for power supply
15	PE	Shielded wire

Table 3-1 Signal definition for CN1

3.3 CN2 Connector View and Layout

CN2 is the signal I/O connector, please refer to the view and layout from the below Figure 3-2.

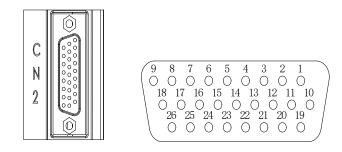


Figure 3-2 The view and layout of the CN2 I/O connector

3.4 Signal Definition of CN2 Connector

Termin	Terminal	Description
al No.	Identification	
19	OA+	Encoder signal output A, B, Z (Line-driver output). The motor encoder signals are available through these terminals.
10	OA-	
11	OB+	
1	OB-	
2	OZ+	
12	OZ-	
4	CZ	Encoder signal Z open-collector output.
6	DGND	Encoder digital signal ground
16	COM+	power input (DC 12-24V) positive end
14	SON	Servo drive enable signal input terminal:SON ON: enable the drive.SON OFF: drive disabled and the motor is in free status.Note 1: The motor must be still before enabling the drive.Note 2: Any other command should be inputted after theSON on signal for 50ms
17	ZCLAMP/ CLE/SC1	In the speed control model when PA23=1 the input terminal is defined as the zero speed clamping function. When PA4=0 the terminal is defined as deviation zero reset function The input terminal is defined as the speed command selection SC1 in the speed control model (PA4=1) when the parameter PA23=0

8	SC2	The input terminal is defined as the speed command selection in the speed control model when PA4=1 and PA23=0. Used to select the different internal speed through the combination of SC1 and SC2. SC1 OFF, SC2 OFF: internal speed 1. SC1 ON, SC2 OFF: internal speed 2. SC1 OFF, SC2 ON: internal speed 3. SC1 ON, SC2 ON : internal speed 4.
7	ALRS	Clear alarm signal
23	DOCOM	I/O signal output ground
21	ALM	Servo Alarm signal
22	BRK	Break release
20	COIN	In the position control mode (PA4=0), COIN is activated when the position error is equal and below the setting value of PA16. In the speed control mode (PA=1), COIN will be activated when the drive has detected the motor has reached the Target Rotation Speed setting as defined in parameter PA28.
13	AS+	Motor speed command:
3	AS-	-10V~+10V, corresponds to -3000~+3000 r/min command and the input impedance is 10KΩ
5,15	AGND	analog signal ground
26	PULS+	Desition Dulas Innut
18	PULS-	Position Pulse Input
24	SIGN+	Position Sign Input
25	SIGN-	
9	PE	Shielding earth cable

3.5 I/O Interface

3.5.1 Digital signal input interface

Digital signal input interface circuit is generally composed by optocouplers, switches, relays, open-collector transistors or other components as shown in the following diagram(3-3).

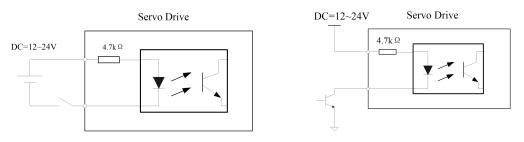


Diagram 3-3 Digital signal input interface circuit type 1

1. The voltage of the external power is DC12~24V and available current should be 100mA at least.

2. Ensure that the polarity of the power is correct, otherwise it will damage the drive.

3.5.2 Digital signal output interface

The digital signal output interface circuit is connected with optocoupler or optocoupler and relays together, achieve the transferring of the isolated digital signal.

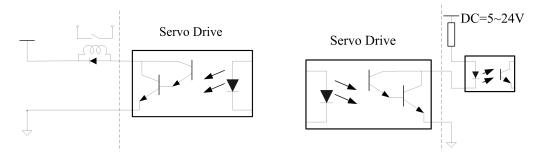


Diagram 3-4 Digital signal output interface circuit type 2

1. The voltage of the external power is DC5~24V.

2. The output form of optocoupler is open-collector, the max current is 50mA and the external max DC voltage is 25V.

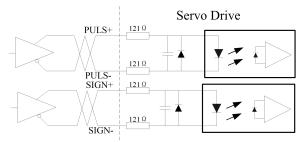
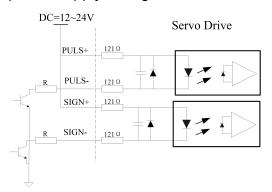
3. When inductive components (i.e relays) are on load, please parallel fly-wheel diode at each end of the component, ensure the correct connection of the polarity, otherwise, it may damage the drive.

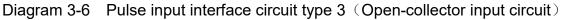
3.5.3 Pulse command input interface

The drive can run two different types of pulse inputs: Line-drive input and Open-collector input. The maximum input frequency of line-drive input is 500Kpps,with strong anti-jamming capability, while the Open-collector input type is 200Kpps. In order to ensure reliable signal transition, the Line-drive input circuit is recommended.

1. Diagram for Line-drive input circuit

In the Line-drive mode, AM26LS31,MC3487 or RS422 is used in the Line-drive output circuit of the host controller.


Diagram 3-5 Pulse input interface circuit type 3 (Line-drive input circuit)

2. Diagram for Open-collector input circuit

The source of pulse input is open-collector PNP equipment which applies the external power of the servo drive. Please pay attention to the power polarity, incorrect connection may damage the drive.

By adopting the open-collector input circuit, it reduces the motion frequency, the driving current of the circuit is between 10~15mA, users can calculate the resistance value of R according to the power supply voltage.

3.5.4 Analog signal input interface

There are two different input circuit types of analog signal: differential input mode

and single-ended input mode. It is recommended to use the differential input circuit as it can inhibit the common-mode interference.

The valid voltage range of analog input command in speed and torque mode is $-10V \sim +10V$, and the input impedance is $10K\Omega$. The command value can be set via relevant parameters. The zero drift of the analog signal could be compensated by adjusting the parameters.

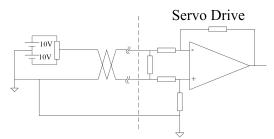


Diagram3-7Analog signal input interface circuit type 4 (differential input mode)

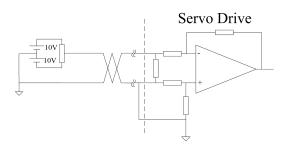


Diagram3-8 Analog signal input interface circuit type 4 (single-ended input mode)

1. Three connecting wires are needed in differential input mode, but only two connecting wires required in single-ended input mode. (The wires mentioned here means the wire from the analog generator.)

Note: under the single ended input mode, the short-circuit is not pre-designed inside of the servo drive in order to avoid the potential interference. Users need to create the short-circuit for CN2 side.

2. The voltage of the signal should not exceed the specified range (-10V~+10V) or it may damage the drive.

3. This interface is a non-isolated input interface, so the shielded cable is recommended to reduce the noise interference.

3.5.5 Encoder signal output interface

The servo drive output the motor encoder feedback position signals by Line-drive transmitter chip AM26LS31 to the controller signal input end. The user could receive the encoder A, B and Z phase signals by two types: Line-drive receiver chip and the

high-speed optocoupler.

The host controller receives the encoder signals by Line-drive receiver chip. Please refer to the wiring diagram from the below Diagram 3-9

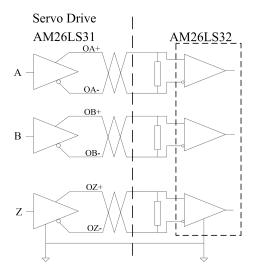


Diagram 3-9 Encoder position signals output interface circuit type 5 (Line-drive)

The value of the resistance is $220\Omega \sim 470\Omega$, and the command ground (GND) of the encoder should connect with the signal ground of the host controller.

When the host controller is receiving the signal by high speed optocoupler, series resistor is required to be added at the input end of host controller, resistance value is 220Ω approx. Detailed circuit please refer to the below Diagram 3-10.

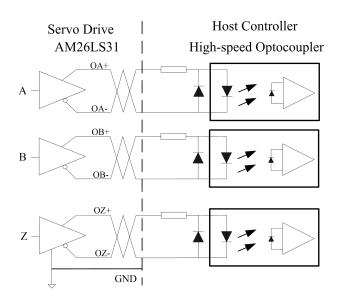
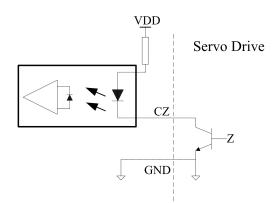
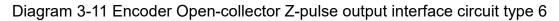




Diagram 3-10 Encoder position signals output interface circuit type 5 (optocoupler)

3.5.6 Encoder open-collector Z-pulse output interface

The drive transmit encoder zero position signal Z to the host controller via open-collector output interface mode. The width of the zero position pulse is narrow, therefore the high-speed optocoupler is recommended as the receiver. This interface is a non-isolated input interface, the maximum current is 50mA and the maximum voltage is 30V. The specific interface circuit is shown as the following.

3.5.7 Encoder feedback signal input interface

The servo drive adopts AM26LS32 or equivalent IC encoder to receive the feedback signal, the detailed circuit please refer to the below Diagram 3-12.

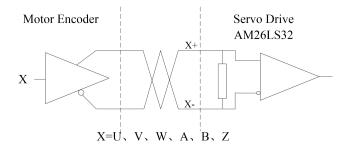


Diagram 3-12 Encoder feedback signal input interface circuit type 7

3.6 Standard Connection Example

3.6.1 Position control mode

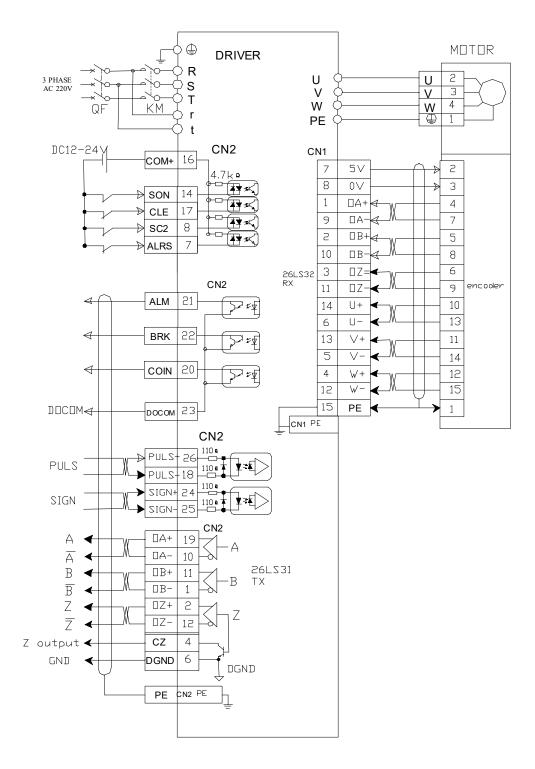


Diagram 3-13 position control mode

Motor ٩ DRIVER R 3 PHASE U U 2 S \mathcal{O} AC220V V V 3 \sim Т ю W W 4 QF KM r PE 1 t CN2 DC12-24V CN1 **COM**+ 16 7 2 5V £ 4.7k Ω 8 OV ┢┱╍Ҳ 3 5 SON SON 14 $\phi - \Box$ 1 OA+ 4 ┢┱┲╱┥ ŒЕ ŒЕ 17**∲**-⊡ 9 OA-7 ▲**< SC2 SC2 8 6-0 2 0B+ 5 ৾৾৾৾য়ৼ৾ৼ৾৾৻ ALRS ALRS 7 10 0B-8 3 6 0Z+ 26LS32 RX CN2 encoder 9 OZ-11 ALM ← ALM 21 10 ₽:≰ 14 $U\!\!\!+$ 6 U 13 BRK **BRK** 22 \triangleleft 13 V+ 11 54 5 V-14 COIN ↔ **COIN** 20 4 12 ₩+ ∇ 12 ₩-15 15 PΕ 1 DOCOM ↔ DOCOM 23 CN1 metal case CN2 ____L<u>}</u> AS+ 13 input of AS (-10V~+10V) AS-3 10k GND -AGND 5 h CN2 OA+ A ∢ 19 А Ā OA-10 4 26LS31 В 4 0B+ 11 ·B ТΧ Β 0B-1 4 Ζ OZ+ 2 4 Ζ Ż 0Z-12 4 Z(0C) ↔ CZ 4 DGND 🔶 DGND 6 DGND ΡE ON2 metal case

3.6.2 Speed / torque control mode

Chapter 4 Panel Display & Operation

This chapter describes the panel status and basic operations of the digital keypad.

4.1 Panel Description

The operation panel is composed by an LED display panel, and 4 functional keypads, for the use of displaying current status of the drive, and setting parameters etc. Please refer the key functions from Table 4-1 and overview of the panel from Figure 4-1

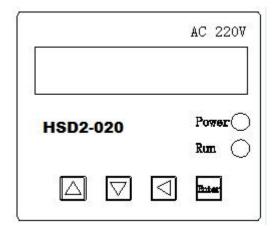


Figure 4-1 Display Panel overview

Symbol	Name	Function
Power	Power	The LED light indicates the control power is
	supply	applied to the circuit.
Run	Running	The LED light indicates the main power is applied
	status	to the circuit and the drive is OK to be started.
	Up key	Pressing the Up and Down key can scroll through and change monitor codes, parameter groups and various parameter settings.
▼	Down key	
•	Return key	Pressing the Return key can exit the menu or
		cancel the operation or the settings.
Enter	Set	Pressing the Set key can enter the menu or save
		the operation /the parameter settings.

Note :The 6 segment LED display is blinking means there is a failure or alarm.

4.2 Main Menu

As the first layer of the operation panel, the main menu consists six sections. You can use the Up and Down key to change the content of the main menu display and press the Set key to enter the secondary menu, you can also press the Return key to quit the secondary menu and back to the main menu.

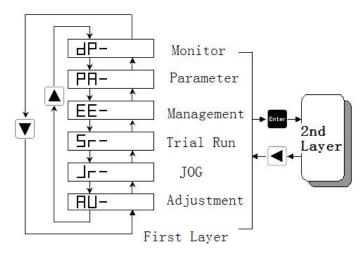


Figure 4-2 Flowchart for the main menu of the operational processes

4.3 Monitoring Display (DP--)

Press the Up and the Down key to find the monitor display from the main menu. When "dp-" is displayed, please press the Set key to enter the monitor mode. There are 19 kinds status for the monitor display, details shown in the following Diagram .Use Up and Down key to select the display and press the Set key to enter the specific monitor and display interface.

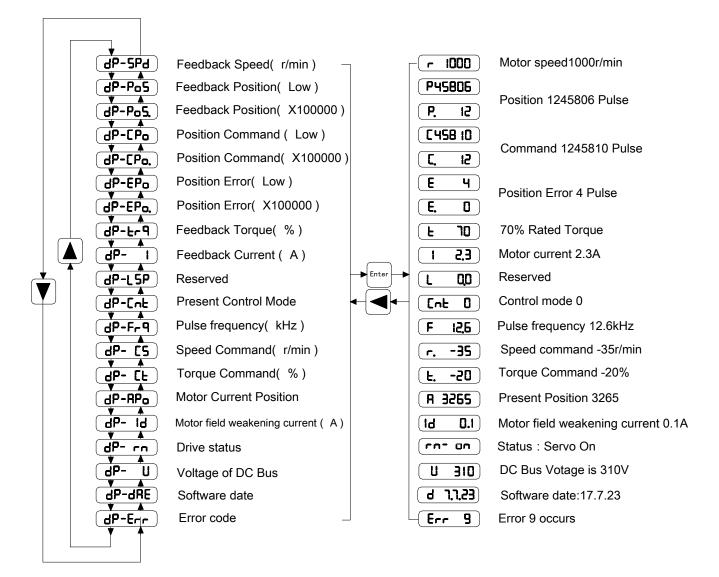


Diagram 4-3 The operational process of the monitor display

4.4 Parameter Setting (PA--)

Find the "PA-" on the main menu by using the Up and Down key, and then enter the parameter selection interface by pressing the Set key. By using the Up and Down key

you can select the parameters according to your requirement, and then press the Set key to enter the parameter modification interface. When the parameter is being modified, the LED digital display is ON, that means you are in the process of changing the parameters but they are not yet being activated. Press the Set key to save them and the light will go off. Press the Return key to cancel the settings if required.

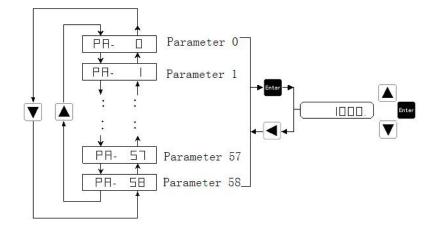


Diagram 4-4 Operation process of parameter settings

4.5 Parameter Management (EE--)

Find the "EE-" from the main menu by using the Up and Down key, and then enter the parameter management interface by pressing the Set key. The functions and descriptions of each symbol are shown in the Diagram 4-5. By using the Up and Down key you can select the operations according to your requirement. Press and hold the Set key for 3 seconds, when "FINISH" is displayed on the LED panel, it means the operation is completed. But if it displays "Error", it means the operation failed, please press the Return key to cancel.

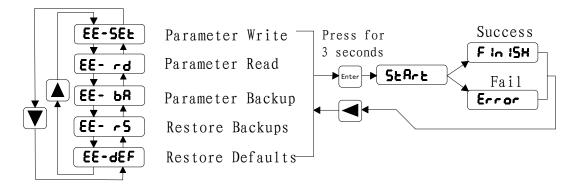


Diagram4-5 Operation process of parameter management

- EE-set Parameters write: It indicates that all the parameters will be stored in the EEPROM parameters district, power-off is not going to lose the saved settings.
- EE-rd Parameters read: you can read the parameters from EEPROM district, modify the parameters according to your request, however,when the power goes off, your revised data won't be saved.
- EE-rs Parameters restore: you can read the data from the EEPROM parameter list, do the changes according to your requirement, perform a write operation to save the revised parameters permanently.
- EE-def Restore the default parameters: when the parameters are disordered or changed improperly, you can bring all of the defaults into the parameter list, and then write the parameters into the EEPROM. After this operation, you should ensure that the motor code (PA1) is matching with the motor you are using.

4.6 Speed Trial Run Without Load (Sr--)

You can enable the "Sr" operation mode by set parameter PA4=3. Find the "Sr-" on the main menu by using the Up and Down key, and then enter the speed trial run operation interface by pressing the Set key. This mode will display an "s" and "Sr 0.00", the speed unit is r/min, input the speed command by pressing Up or Down key.

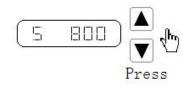


Figure 4-6 Speed trial (off load) display

4.7 JOG Trial Run Without Load (Jr--)

You can enable the "Jr" operation mode by set parameter PA4=4 and change the JOG speed command by setting parameter PA 21. You can find the "Jr-" on the main menu by using the Up and Down key, and then enter the JOG trial run operation interface by pressing the Set key. When "J 0.0" is displayed (unit is r/min), press Up or Down key to jog the motor CCW or CW direction. The motor will rotate according to the given speed command.

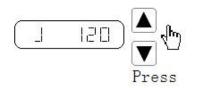


Figure 4-7 Jog trail run without load

4.8 Analog Zero-offset Adjustment (AU)

By performing the following operation, the drive can automatically detect the zero bias of the analog speed or torque command, and write the value in the parameter PA45 or PA39. After that, the drive will save the parameter in the EEPROM automatically. You can find the "AU-" from the main menu by using the Up and Down key, and then enter the operation interface for Zero-offset adjustment by pressing the Set key. The AU-SPD correspond to the speed zero-offset adjustment and the AU-trq correspond to torque zero-offset adjustment. Select the process by Up or Down key, and then press and hold the Set key for 3 seconds till the LED displays "FINISH".

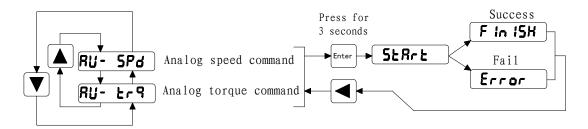


Figure 4-8 Operations of analog zero-offset adjustment

Chapter 5 Trial Run and Tuning

This chapter describes trial run for servo drive and motor, including the trial run without load and introductions about the operation mode of the drive. Please always make sure that you perform a trial run without load first, before an on-load running/operation.

5.1 Inspection Without Load

In order to prevent accidents and avoid any potential damages to the servo drive and mechanical system, the trial run should be performed without load. Please remove the load of the servo motor, including coupling on the shaft and accessories so as to avoid any damage on servo drive or mechanism. This is aiming to avoid the falling off of the disassembled parts of the motor shaft and indirectly causing the personnel injury or equipment damage during operation.

Always remember to perform the trial without load first before you connect the drive with power supply.

Before the trial run (without load), please inspect the following points carefully:

1. Check the drive and motor appearance to see whether or not there is any obvious damage.

2. Check all the wiring to see if they are correctly connected, especially R, S, T, U, V, W and PE terminal. The terminals should be connected with the specified cables.

3. Ensure that there are no extra things inside the drive, such as conductive objects and flammable objects.

4. Confirm that the electromagnetic brake is working normally if brake is required.

5. Please make sure the external voltage level of the servo drive is correct.

6. Make sure that the cable and the mechanical parts are not intertwined, to avoid wear or pulling phenomenon at the run time.

7. Ensure that the servo drive and motor are well connected to the ground.

Please pay attention to the following notes when you are undertaking the trial run.

1. Please check if there is any abnormal display of the power indicator and LED display panel.

2. Ensure that all user-defined parameters are being set correctly. The

characteristics of different machinery equipment differ from each other, in order to avoid accident or cause potential damage, do not adjust the parameter abnormally and change parameter to an excessive value.

3. Make sure that the servo drive is off when you set parameters.

4. Check the vibrations and sound during operation. If the servo motor is vibrating or there are unusual noises while the motor is running, please contact your local distributor or manufacturer for further assistance.

5. Please make sure that all the relays are working properly, contact our local distributor or us directly if there is any abnormal case.

5.1.1 Apply power to the drive

Turn on the control power supply (leave the main power off at the moment), the LED indicator should be lighted, if there is any alarm displayed on the panel, please check the wiring.

Next, connect the main power supply, the RUN indicator should be on, if not or there is any alarm, check the wiring, or replace your drive.

5.1.2 JOG trial run without load

It is very convenient to use JOG trial run without load to test the servo drive and motor as it doesn't require an extra wiring. In order to ensure a safe trial run, it is recommended to set JOG speed at low speed level such as 100r/min. The JOG speed could be set in the parameter PA21.

1. Parameter settings

 Table 5-1
 Parameter setting table of the JOG trial run

Parameter NO.	Name	Default	Setting	Description
PA04	Control Mode	0	4	Select the operation mode as JOG trial running mode.
PA20	Inhibit Drive Function	3	0	Ignore the drive prohibition
PA21	JOG speed	120	100	Speed command selection
PA40	Acceleration Time	0	Opportune	ReducetheaccelerationShock.

HSD2 Series AC Servo Drive

PA41	Deceleration Time	0	Opportune	Reduce the deceleration Shock.
PA53	Enabled Word 1	1	1	Enable the drive without the external force

2. Operation

Step 1: Set the parameter PA53=0001, the servo drive is activated, indicator Power and Run is on light, both the drive and motor are in a zero speed running status.

Step 2: Set parameter PA21 as JOG speed. After the desired JOG speed is set, and then press the Set key, the speed will be written into the control software.

Step 3: Enter the JOG operation interface by using the digital keypad, and the digital LED display should be displayed as the following:

J 0.0 (r/min)

Step 4: Press the Up key and the servo motor will run in CCW direction. After releasing Up key, the motor will stop running.

Step 5: Press the Down key and the servo motor will run in CW direction. After releasing Down key, the motor will stop running.

Step 6: Press Return key, the drive exits JOG operation mode.

CCW and CW definition.

CCW (): Face the servo motor shaft, CCW is running in the counterclockwise direction.

CW (): Face the servo motor shaft, CW is running in clockwise direction.

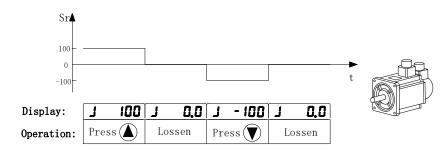


Figure 5-1 JOG trial run without load

5.1.3 Speed trial run without load

Before you perform this operation, please ensure all the parts and basement are properly tightened and secured with the servo drive and motor. During the high speed running, any unsecured parts can cause malfunction and personnel injury.

1. Parameter setting

Parameter	Name	Default	Setting	Description
PA04	Control mode	0	3	Select the operation mode as speed trial running control mode.
PA20	Inhibit Drive Function	3	0	Ignore the drive prohibition
PA53	Control word 1	1	1	Enable the drive without the external signal

Table 5-2Parameters for the speed trial run

2. Operation

Step 1: Set the parameter PA53=1the servo drive is activated, indicator Power and Run is on light, both the drive and motor are in a zero speed running status.

Step 2: Set parameter PA04 =3, choose the speed trial running mode as the current mode.

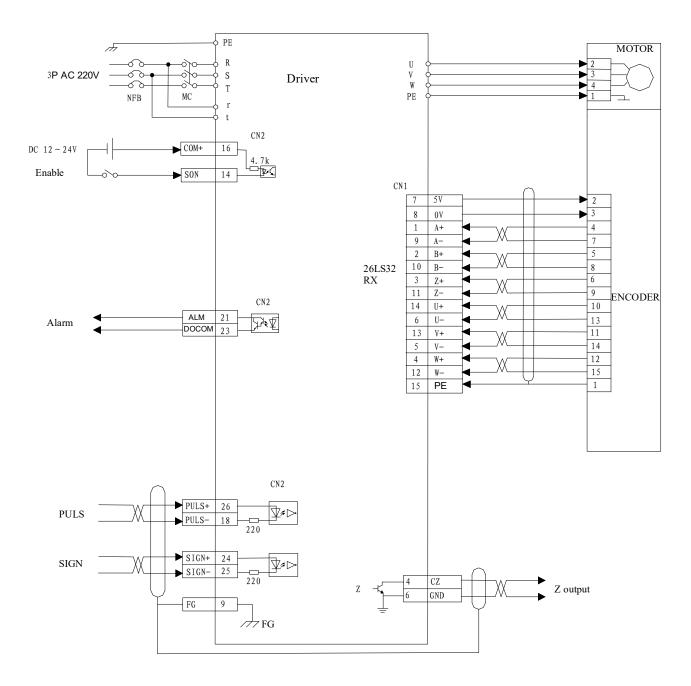
Step 3: Enter the speed trail run operation interface by pressing the UP and DOWN key, the minimum given vale is 0.1r/min.Use the Up or Down key to select the "Sr" mode on the main menu, and the press the Set key to enter the operation interface for the speed trial running. And the LED display should be shown as the following:

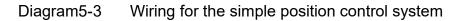
S 0.0 (r/min)

Step 4: By pressing the UP and DOWN key, you can change the running speed as well as the running directions (CCW, and CW).

Figure 5-2 Speed trial run

5.2 Position Control Mode


The position control mode is usually used for the applications requiring precision positioning, i.e, industry positioning machine. Before position trial run, please carry out the following inspections:


1. Ensure that all wiring is correct and wiring terminals of the servo drive and motor are correctly insulated.

2. Ensure all the parts and basement are properly tightened and secured with the servo drive and motor. During the high speed running, any unsecured parts can cause malfunction and personnel injury.

5.2.1 Simple position control system

A simple position control system only requires two sets of position pulse command signals, drive enable signal, prohibited drive signal, servo ready and servo alarm output signals. Please refer to the wiring from the below Diagram 5-3.

Note: In section 3.6.1, you can find the detailed wiring diagram for the position control system.

5.2.2 Parameters for the position control

Table 5-3 Pa	arameters for the	position	control mode
--------------	-------------------	----------	--------------

Parameter NO.	Name	Value range	default	unit
PA04	Control mode	0~-8	0	
PA09	Proportional Position Loop Gain	1~1000	60	Hz
PA10	Position Feed Forward Gain	0~100	0	%
PA11	Filter time Constant of PA10	0~1000	0	ms
PA12	Pulse command Electronic Gear Ratio (Numerator) N1	1~30000	1	
PA13	Pulse command Electronic Gear Ratio (Denominator) M1	1~30000	1	
PA14	External Pulse Input Type	0~2	0	
PA15	Direction of external pulse	0~1	0	
PA16	Positioning Completion range	0~30000	20	
PA17	Position error Range	0~30000	400	100 pulse
PA18	Position Error Invalid control bit range	00~11	01	
PA19	Position command Smooth filter	0~30000	0	0.1Ms
PA20	Inhibit Drive Function Selection	0~3	3	
PA53	Digital Input Terminals Function Selection / Enabled Word 1	0~1	1	

Pulse command input type

Pulse Type	Forward	Reverse	PA14
Pulse + Direction	PULS		0
CCW + CW	PULS		1
AB Phase Pulse			2

 Table 5-4
 Type and waveform of position command input type

The host controller uses pulse command to control motor running and positioning via servo drive, in general, there are three different types of pulse outputting from the host controller: Pulse+ direction; CCW+CW;AB phase pulse..

The above three types are applicable with HSD2 series drive, you can select the required mode by setting parameter PA14.The detailed descriptions, please refer to the Table 5-4, the arrows indicate pulse counting, PA15 is used to change the pulse count direction.

Position pulse inputs through the terminals PULSE+(26), PULSE-(18), SIGN+(24), SIGN-(25) of CN2 connector, please refer to the detailed definition and description from section 3.4

Filter for position control

The filter is designed to smooth the motion command. You can set parameter PA19 to to achieve pulse filtering under the following circumstances: when the host controller doesn't have accelerate or decelerate function, electronic gear ratio set value being too high; system load inertia being high or command frequency value is low. By using the pulse filter, you can have a more stable and smooth pulse frequency, avoid position command lose, however, this performance will delay command reactions. When PA19=0,it means the filter is being disabled. This parameter indicates the time for position frequency varies from 0-63% of the external pulse frequency. The pre and after filtering diagram comparison, please refer to the following Diagram 5-4.

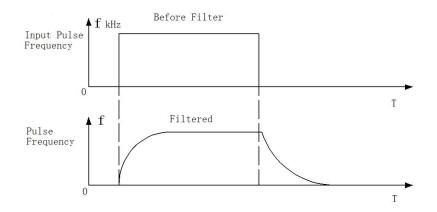


Diagram5-4 Comparison waveform between Pre and after filtering

5.2.3 Electronic gear ratio

Electronic gear provides simple ratio change of travel distance. The high electronic gear ratio would cause the position command to be the stepped command.

Please follow the below rules for setting:

- N1: Numerator of the electronic gear ratio (PA12)
- M1: Denominator of the electronic gear ratio (PA13)
- P1: Number of pulses corresponding to 1mm in the host controller
- F2: Number of encoder pulses per circle
- S1: Screw pitch of the mechanical transmission (mm)
- F1: Number of pulses required by actual moving distance 1mm.

F1=N1*P1/M1 (pulses / mm)

F1=F2/S1 (pulses / mm) for actual moving distance without gearbox

Therefore the electronic gear ratio N1/M1 is equal to F2/(S1*P1).

For example, if P1 of the host is 1000 pulses/mm, F2 of the H series servo drive is 10000, S1 of the screw is 6mm, the electronic gear ratio N1/M1=10000/($1000^{+}6$)=5/3. So you can set the parameter PA12 (N1)=5 and the PA13 (M1)=3.

If there is a gearbox between ball screw and motor, the ratio of the gearbox is N2/M2;

- N2: rotation number of the motor
- M2: rotation number of the ball screw

F1=N1*P1/M1 (pulses / mm) for host controller

F1=F2*N2/(S1*M2) (pulses / mm) for actual moving distance with gearbox Therefore the electronic gear ratio N1/M1 equals to F2*N2/(S1*P1*M2).

For the above-mentioned example, if the ratio of the gearbox is N2/M2=5/3.

According to the formula, the electronic gear ratio N2/M2=10000*5/(1000*6*3)=25/9. So you should set the parameter PA12 (N2) =25 and the PA13 (M2) =9 for the mechanical transmission system with a gearbox.

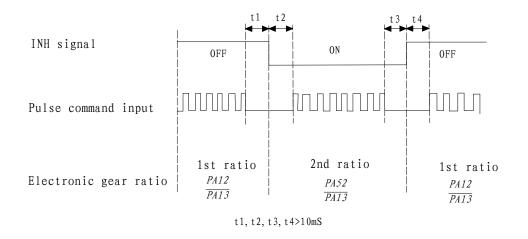


Diagram5-5 Dynamic electronic gear ratio

Note: HSD2 series servo drive provides two sets of dynamic electronic gear ratio. The second numerator of the electronic gear ratio is set in the parameter PA 52, and denominator is same as the first one (PA13). When the PA51 equal to 1, the function of the dynamic electronic gear is enabled and the signal connected to pin-15 of the I/O port CN2 could control the switching of the electronic gear. When the level of the signal is low, the servo drive chooses the second electronic gear ratio PA52/PA13.

5.2.4 Position control gain

Before you set the position control unit, please complete the setting of speed control unit manually since the speed loop is included in the position loop. After this operation, you can then adjust the position loop gain PA09 and position feed forward gain PA10 accordingly.

Parameter NO.	Name	Description	Value range	Defaults
PA-09	Position control gain	Increase the gain so as to enhance the response bandwidth of position loop.	0~1000	50
PA-10	Position feed forward gain	Minimize the deviation of phase delay	0~100	0
PA-11	Feed forward smooth filter	Smooth the accelerate and decelerate ,reduce overshoot.	0~1000	0

Table 5-5	The parameters for the position control gain
-----------	--

Because the positional control loop includes the speed control loop, the position loop bandwidth can be restricted by the one of the speed loop. It is recommended that the speed loop bandwidth should be at least four times faster than the position loop bandwidth. This means that the setting value of the proportional speed loop gain PA05 should be at least four times more than position control gain PA09.

The position loop bandwidth cannot exceed the speed loop bandwidth. It is suggested that $fp \le fv/4$.

fv: response bandwidth of speed loop (Hz).

Fp: response bandwidth of position loop(Hz)

KPP (PA09)= 2 × π × fp

For example, the desired position loop bandwidth is 40 Hz.

Then PA09=2* π *40=251 rad/s

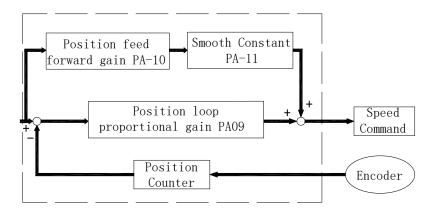


Diagram5-6 Flowchart of the position control loop

Increase the value of position loop gain can enhance the position response and reduce position error. If the set value is too high, it may cause vibration and noise.

If the position command is being transmitted smoothly, increasing the gain value can reduce the position error. However, if the position command is not transmitted smoothly, decreasing the gain value can tackle the problem of mechanical vibration.

When the value of proportional gain, (KPP set value) is too big, the response bandwidth of position loop will be increased and diminish the phase margin. And the motor rotor rotates back and forth with vibration. Thus, KPP has to be decreased until the rotor stops vibrating. When the external torque interrupts, the over low KPP (PA09) cannot meet the demand of position deviation. In this situation, adjusting parameter PA10 can effectively reduce the position error.

5.3 Gain Adjustment

Servo drive has three control loops: position control loop, speed control loop and current control loop. Please refer to the below Diagram 5-7 for detailed explanation.

The inner control loop bandwidth should always be higher than the outer control loop, otherwise it will cause motor rotor running back and forth with vibration and noise, affect the actual performance.

Therefore, having correct selection of response bandwidth for each control loop is very crucial. Generally speaking, the current loop has the highest response bandwidth while the position loop has the lowest.

The response bandwidth of the current loop is decided by the system itself, users can't modify this value by themselves. Please set and match the bandwidths for both speed loop and position loop properly through adjusting.

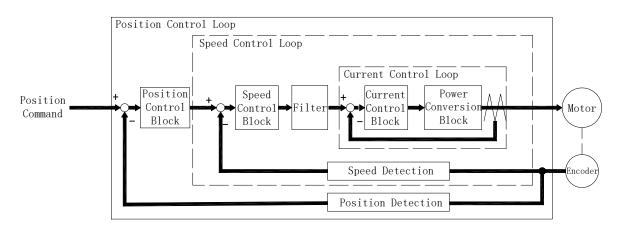


Diagram 5-7 Servo closed-loop control

5.3.1 Steps for gain adjustment

Since the motor load inertia, stiffness, damp ratio differ from the environment or application changes, the system default settings are not good enough to ensure a perfect response and cover all the circumstances. Therefore, adjusting the speed and position respond bandwidth according to each application is quite necessary to achieve a good performance from the servo system.

As for the whole system, when you change one of the parameters, the relevant ones also need to be modified accordingly, please do not set some excessive values and follow the below operation rules respectively:

	Reduce vibration or overshoot	Increase response speed	
Stop 1	Decrease the proportional position	Increase the proportional speed	
Step 1	control gain PA9	control gain PA9	
Stop 2	Increase the integral time of the	Decrease the integral time of the	
Step 2	speed control PA6	speed control PA6	
Stop 2	Decrease the proportional speed	Increase the proportional position	
Step 3	control gain PA5	control gain PA9	

Table 5-6 steps and rules for parameters setting

5.3.2 Gain adjustment for speed control loop

You can adjust the relative speed control loop gain according to the following steps: Step 1: Increase the integral time of the speed control loop PA6 Step 2: Gradually increase the value of the proportional speed control loop gain PA5 setting without causing major vibration or noise ,if this does occur, please decrease the gain setting value properly.

Step 3: Gradually decrease the integral time of the speed control loop PA6 until the resonance occurs, and then increase the setting value to eliminate the vibration.

Step 4: If the mechanical system resonates at a certain point, it's impossible to get a very good system response performance. In this case, please adjust the torque value PA22 for the low-pass filter to suppress the resonance, repeat the above steps to achieve a better response characteristic for the position and speed control loop.

5.3.3 Gain adjustment for position control loop

If the inertia of the machinery and conditions of applications is too high, and it creates system resonance, you can adjust the relative parameters according to the following steps:

Step 1: Increase the integral time of the speed control loop PA6

Step 2: Gradually increase the value of the proportional speed control loop gain PA5 setting without causing major vibration or noise ,if this does occur, please decrease the gain setting value properly.

Step 3: Gradually decrease the integral time of the speed control loop PA6 until the resonance occurs, and then increase the setting value to eliminate the vibration.

Step 4: Gradually increase the value of proportional position loop gain until the resonance occurs, and then decrease the setting value to eliminate the vibration.

Step 5: If want to shorten position control time and minimise position error, you can adjust position feed forward gain PA10 and PA11 (the smooth constant of feed forward gain) to achieve it.

Step 6: If the mechanical system resonates at a certain point, it's impossible to get a very good system response performance. In this case, please adjust the torque value PA7 for the low-pass filter to suppress the resonance, repeat the above steps to achieve a better response characteristic for the position and speed control loop.

5.4 Electromagnetic Brake

When operating brake via servo drive, if the digital output BRK is set to off, it

indicates that the electromagnetic brake is disabled and motor is locked. If the digital output BRK is set to ON, it indicates electromagnetic brake is enabled and motor can be operated. The electromagnetic brake is usually applied in Z-axis to reduce the large energy generated from servo motor. In order to avoid the brake error, it must be on when the servo drive if off. The brake has to be activated before the motor stops running (Servo OFF). The brake has to be released after Servo ON. Otherwise, it would become the load of the motor and may damage the brake.

If the brakes is working during the process of acceleration or constant speed, the servo drive needs to generate more current to resist the force of brake and it may cause the alarm of overload warning.

5.4.1 Parameters of electromagnetic brake

The on delay time of the electromagnetic brake is set within the servo drive, except this there are three parameters about the off delay time (speed) of the electromagnetic brake. The users can use these three parameters to set the off delay time of electromagnetic brake.

Parameter	Nama	Value	Defaulte	Unite	Applic
NO.	Name	range	Defaults	Units	able
	Motion delay time of				All
PA47	electromagnetic brake when	0~200	0	10ms	All
	motor is still				
	Motion delay time of				All
PA48	electromagnetic brake when	0~200	50	10ms	All
	motor is running				
	Motion speed for				All
PA49	electromagnetic relay when the	0~3000	100	r/min	All
	motor is running.				

 Table 5-7
 Parameters for the electromagnetic brake

5.4.2 Wiring of electromagnetic brake

Wiring of the electromagnetic brake is shown in the below Diagram 5-8.

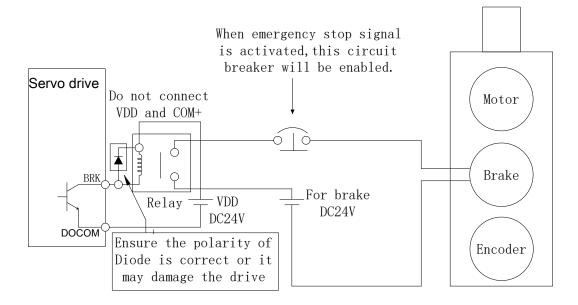
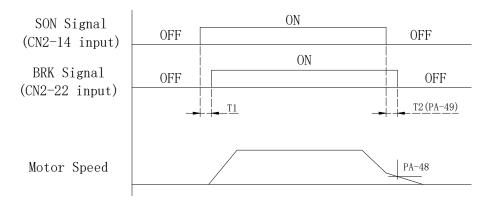



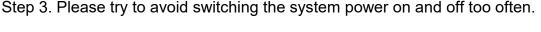
Diagram 5-8 Diagram for electromagnetic brake

The BRK signal controls the brake operation. The VDD DC24V power supply supplied externally should be used to power the relay coil. When BRK is on, the motor brake is activated. Please note the coil of the brake has no polarity, while the diode has polarity, please ensure the polarity of the diode is correctly matched or it may cause damages to the drive. Power supply for brake is DC24V. Never use brake power and control power (VDD) at the same time.

Timing diagram of electromagnetic brake control:

BRK output timing explanation:

1. when servo off (when DI SON is not activated), the BRK output goes off (electromagnetic brake is locked) after the delay time set by PA48 reached and the motor speed is still higher than the setting value of PA49.

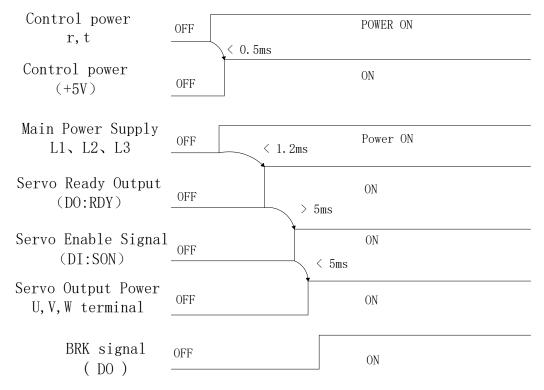

2. when servo off (when DI SON is not activated), the BRK output goes off (electromagnetic brake is locked) if the delay time set by PA48 has not reached but the motor speed is still lower than the setting value of PA49.

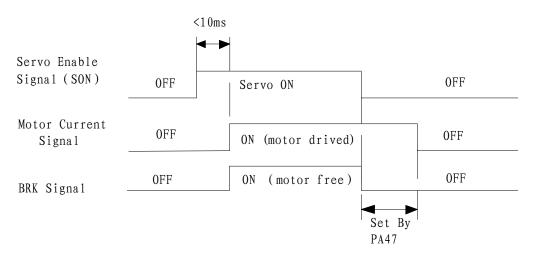
5.5 Timing

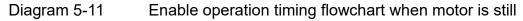
5.5.1 Timing for power supply

Step 1. Control power supply should be turned on earlier than the main power, or simultaneously.

Step 2. When the main power is turned on, it delays for about 1.2s. The servo SYDY signal is ready, then the servo drive is able to receive enable signal (SON) from host controller. When the drive detects SON signal, main circuit can be activated, the motor is now in a operational status. If the serve drive detects the invalid SON signal or there is any alarm, main circuit will be disabled and the motor will be in a zero-speed status.

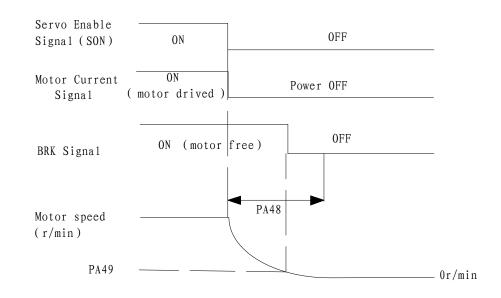



Diagram5-10 Timing flowchart of control power and main power

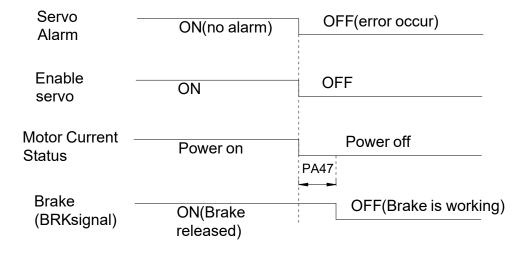

Note: Even if the host controller output the SON signal before the SRDY signal of the drive, the servo drive couldn't receive the SON until the SRDY signal is ON for 5 ms.

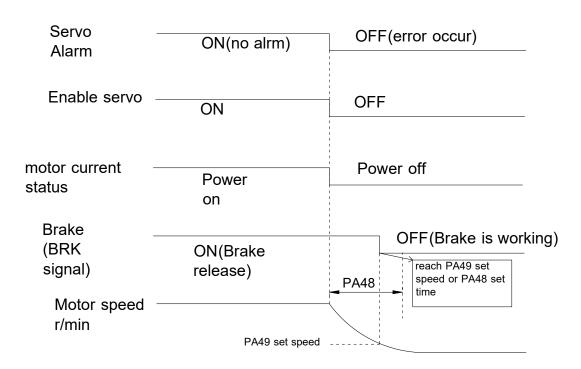
5.5.2 Timing for enable operation

1. Enable operation ON/OFF timing for standstill motor


When the motor is still, if the SON is OFF, the main circuit continues to work to hold the position, the brake is going through the stage of OFF-ON-OFF, wait for a while(PA47 setting value) and disable the power supply for the motor.

2. Enable operation ON/OFF timing when the motor is running


When the motor is running, if the SON is off, the main circuit of the drive will be disabled and the brake continues to be ON before it turns OFF because of the delay. In this way, we can avoid the potential damage to the brake when the motor is still running at a very high speed. The actual delay timing is decided either by parameter PA48 or the time for the motor to be slowed down to the set value of PA49, the lower one of the two numbers is the actual delay time.


5.5.3 Servo enable & servo alarm flowchart

1.servo enable & servo alarm timing flowchart when the motor is in static status:

Note: when the motor is in a static status, an error occurs, it will trigger the servo alarm, servo enable OFF very instantly, this will cut off the power at the same time. If you want the brake to work instantly, you need to set PA47=0.

servo enable & servo alarm timing flowchart when the motor is in the running status.

Note: when the motor is in a running status and there is an error and it triggered the servo alarm, servo enable will be off very instantly, power will be cut off at the same time. The motor may be running at a high speed when the alarm triggers, in this case, if the brake is enabled to stop the motor at a high speed, it may damage the brake. Therefore, we have PA48 and PA49 two parameters to avoid the potential damage. PA48 is the brake response delay time, PA49 is the set motor speed for the brake to enable. The brake will work if one of these parameters reached it's set value.

If the motor is applied on the vertical axis of the equipment/machine, and it doesn't allow any degree of free-fall of the motor, set PA48=0,and the brake will be working straight after the alarm triggered.

If the applied equipment can allow a certain distance of free-fall for the motor, you can set proper values for PA48 & PA49, the brake will be enabled until the motor speed slows down to a certain degree(PA49 set value).During the speed slowdown process, the power is in OFF status for the servo, the load inertia slows the motor down in this case. If the time for the motor to reach PA49 set point is longer than PA48, then once it passed PA48 set time, brake enables.

5.6 Start & Stop

The drive start/stop characteristics is determined by many aspects, such as load inertia, on/off frequency, the status of both the drive itself and servo motor.

5.6.1 On-off frequency and load inertia

When the servo drive is used in the applications which require high on-off frequency, please confirm whether the frequency is within the rated frequency range of "H" series servo drives before you connect the application. The frequency range is determined by the motor type, the load inertia and the speed of the motor etc. Please refer to the detailed information from Table 5-8.

Inertia multiples	On-off frequency and ACC/DEC time
J≤3J _{motor}	f>100 /min; less than 70Ms
J≤5J _{motor}	60 <f≤100 130ms<="" less="" min;="" td="" than=""></f≤100>
J>5J _{motor}	f≤60 /min; greater than 150Ms

Note: The above table only provides the on-off frequency in the general cases, the specific circumstances will vary from the motor types and the load conditions.

5.6.2 Adjustment Method

When the load inertia is five times (or above) greater than the motor inertia, some errors may occur, such as position overshoot, excessive position deviation and speed response fault, break abnormal etc.

Under the above situations, you can take relevant actions according to the following steps:

Step 1: Increase the value of PA5 properly.

Step 2: Decrease the value of PA9 in the meantime. Reduce the inner torque limitation value PA36.

Step 3: Increase the value of the parameter PA40, PA41 and PA42. (ACC/DEC time content) along with the S-curve ACC/DEC time content.

Step 4. Increase the ACC/DEC time content of the host system.

You can also consider of selecting a bigger inertia motor to meet your requirement.

Chapter 6 Parameters

6.1 Parameter Summary

The defaults of the following parameter table is shown as an example of HSD2-030 drive. The value of the parameters marked "*" may be different from other types.

In the table, Applicable Mode means that the parameter can play a role in a certain control mode: P refers to position control mode, S refers to speed control mode, T refers to Torque control mode and ALL refers to all of the control mode(position, speed and torque control mode).

Input password parameter PA0 =315, you are able to set all parameters except for PA1.You need to set password PA0 = 302 to do changes about PA1.

			l		
No.	Function Description	Applicabl e Mode	Range	Default	Unit
PA-0	Password	ALL	1-1000	315	
PA-1	Motor Type Code	ALL	20~200	53*	
PA-2	Software Version(read only)	ALL	0~99999	3.85.19*	
PA-3	Initial Display Status	ALL	0~19	0	
PA-4	Control Mode Selection	ALL	0~8*	0	
PA-5	Proportional Speed Loop Gain	P, S	1~5000	280*	Hz
PA-6	Speed Integral Time	P, S	1~1000	30*	ms
PA-7	Speed detection filter	ALL	1~1000	10	0.1ms
PA-8	Differential coefficient of position	Р	0-100	0	%
PA-9	Proportional Position Loop Gain	Р	1~1000	100	Hz
PA-10	Position Feed Forward Gain	Р	0~100	0	%
PA-11	Smooth Constant of Position Feed Forward Gain	Р	0~1000	25	ms
PA-12	Electronic Gear Ratio (Numerator) N1	Р	1~30000	1	
PA-13	Electronic Gear Ratio (Denominator) M1	Р	1~30000	1	
PA-14	External Pulse Input Type	Р	0~2	0	

Table 6.1 Parameter List

PA-15	Direction of External Pulse	Р	0~1	0	
PA-16	Positioning Completed Width	Р	0~30000	20	pulse
PA-17	Excessive Position Error Range	Ρ	0~30000	400	×100 pulse
PA-18	Excessive Position Error Invalid	Ρ	00~11	01	
PA-19	Smooth Constant of Position Command	Ρ	0~30000	1	0.1Ms
PA-20	Inhibit Drive Function Invalid	ALL	0~3	3	
PA-21	JOG Operation Speed	S	-3600~3600	120	r/min
PA-22	Torque command filter	ALL	1-1000	10	0.1ms
PA-23	Inner Speed Command selection	S	0~5	0	
PA-24	Inner Speed Command 1	S	-3600~3600	0	r/min
PA-25	Inner Speed Command 2	S	-3600~3600	100	r/min
PA-26	Inner Speed Command 3	S	-3600~3600	300	r/min
PA-27	Inner Speed Command 4	S	-3600~3600	-100	r/min
PA-28	Target Motor Speed	S	0~3600	500	r/min
PA-29	Analog Torque Command Gain(input)	Т	10~100	50	0.1V/100 %
PA-30	Direction of Torque Command	Т	0~1	0	
PA-31	Zero-offset Compensation for Torque Command	Т	-2000~2000	0	
PA-32	Max speed limit of Torque Command	Т	0~3600	1000	r/min
PA-33	DO status monitoring	ALL	000~111	111	
PA-34	DI status monitoring	ALL	0000~1111	1111	
PA-35	Max speed limit of motor	ALL	0~3600	1000	
PA-36	Internal torque limit	ALL	5~600	300	%
PA-37	Negative torque arrival set point	ALL	5~300	100	%
PA-38	Positive torque arrived set point/ Maximum torque limit in test run and JOG mode	ALL	5~300	100	%
PA-39	Min speed limit under analog speed control mode	S	0~1000	3	

	Time of acceleration for 0 to				
PA-40	Time of acceleration for 0 to 1000rpm	S	0~10000	100	Ms
PA-41	Time of deceleration for 0 to 1000rpm	S	0~10000	100	Ms
PA-42	ACC/DEC S-curve duration time	S	0~10000	100	Ms
PA-43	Analog Speed Command Gain	S	10~3000	300	(r/min)/V
PA-44	Direction of Speed Command	S	0~1	0	
PA-45	Zero-offset Compensation for Analog Speed Command	S	-2000 ~2000	0	
PA-46	Analog speed command filter	S	1~1000	3	mS
PA-47	Motion control for Electromagnetic Brake when motor stops	ALL	0~300	0	×10Ms
PA-48	Motion control for Electromagnetic Brake when motor is running	ALL	0~300	50	×10Ms
PA-49	Speed control for Electromagnetic Brake when motor is running	ALL	0~3600	100	r/min
PA-50	Sampling Gain for Bus Voltage	ALL	10~3000	511*	
PA-51	effective electronic gear ratio	ALL	0~1	0	
PA-52	Electronic gear ratio(Numerator 2)	ALL	1~30000	1	
PA-53	Inside SON enable	ALL	0~1	1	
PA-54	Z signal output pulse width selection	ALL	00~01	01	
PA-55*	AB output dividing factor	ALL	1~250	1	
PA-56	Digital Output effect level	ALL	000~111	000	
PA-57	DO1 function definition(ALM)	ALL	1~5	1	
PA-58	DO2 function definition(COIN)	ALL	1~5	3	
PA-59	DO3 function definition(BRK)	ALL	1~5	4	
PA-60	Reserved			167	

HSD2 Series AC Servo Drive

PA-61	Input vibration elimination time constant	ALL	0~100	2	
PA-62	PA-62 Digital Import effect level		0000 ~1111	0000	
PA-63	DI1 function definition(SON)	ALL	1~8	1	
PA-64	DI2 function definition(CLE)	ALL	1~8	2	
PA-65	DI3 function definition(SC2)	ALL	1~8	3	
PA-66	DI4 function definition(ALRS)	ALL	1~8	4	
PA-67	Motor thermal protection level	ALL	1~5	4	
PA-68 Pulse window filtering		Р	0~250	3	0.1us
PA-69	Drive thermal protection level	ALL	1~2	1	

Note1: "*" next to the parameter numbers means this function may be "reserved" for some models, for instance,PA-55*, it may not exist or reserved in some models, the detailed information, please consult with our after sales service center or local distributors.

Note2: PA4 only have 0~5 of HSD2-050.

6.2 Detailed Parameter Description

Table 6-2 Detailed description for the parameter settings

NO.	Name	Function description	Value range
	Password	1: Password is 315	
0		2: motor type password is 302, you only need this	1~1000
		when you are modifying PA1	
	Motor type	Select the motor type that you are using; in case	
	code	you need to revise this number, input PA0 is 302,	
1		which is the password, finish off your parameters	20~200
		setting, power the drive off and on again then the	
		changes will be effective.	
	Software	Software version read only, you can't change the	
	Version	details, A means the drive power level, B C D E	
		means the different software versions.	
		A=1, 500W;	0~9999
2		A=2, 900W;	9
		A=3, 1.5kw;	Ū
		A=4, 1.5kw;	
		A=5, 2.5kW;	
	Initial diaplay	A=6, 3.5kW.	
	Initial display	Select the display status when the drive has been	
	status	powered on:	
		0: actual motor speed.	
		1:low data of the feedback position	
		2:high data of the feedback position	
		3: Low data of the position command	
		4: High data of the position command	
		5: Low data of the position error	
3		6: High data of the position error	0~19
		7: motor torque	
		8: motor current(Q axis);	
		9: Reserved	
		10: control mode;	
		11: pulse frequency of position command	
		12: Speed command	
		13: Torque command	
		14: Motor feedback current -position.	

		 15: D-axis current 16: Reserved 17: DC bus voltage 18: Drive operation status 19: Error/alarm code; 	
4	Control Mode selection	 Select the requested control mode by changing the following parameters: 0: Position control mode, controlling the position command pulse input and output; 1: Speed control mode. 2: Torque control mode 3: Speed trial run control mode, type in the numbers via keypad, users can test the drive and motor. 4: JOG control mode, enter the Jog control operation panel, press and hold the UP key, the motor will be running at a JOG speed, release the UP key, the motor stops with a zero speed; press and hold the DOWN key, the motor will be running at the JOG speed in a reverse direction, release the DOWN key, motor stops. 5: Zeroing encoder control mode, set PA4=5 will enter this mode directly. 6: Position <> Torque mode switching by DI 8: Speed <> Torque mode switching by DI 	0~8
5	Proportional Speed Loop Gain	Generally speaking, increase this value can improve response performance and reduce the error. The default value is 170. The gain should be increased if the load inertia is relatively high. Generally if the load inertia is greater, the value should be modified larger. You can increase the gain as much as possible without causing big noise and obvious vibration.	1~5000 Hz
6	Integral Time of Speed Control Loop	The value of the integral time has an effect on the response performance of the speed control loop. The lower the value is, the quicker the speed will be, however, when the value is too low, it may cause overshoot. Users need to adjust the value by the motor type and load inertia etc. Generally,	1~1000 Ms

		having a big load inertia requires a bigger value	
		setting.	
	Speed	1.the bigger this value is, the lower the cut-off	
	Detection	frequency will be, less produced noise from the	
	Filter time	motor. If the load inertia is being very high, please	
	constant	increase this value considerably without causing	1~1000
7		major vibration and noise.	×0.1Ms
		2.Decreasing the value can uplift the cut-off	0.11110
		frequency, enhance the speed feedback response	
		performance.	
	Differential	The larger the value, the faster the speed	1~1000
8	coefficient of	response.	×0.1Ms
	position	Excessive value may cause motor vibration.	^U. HVIS
	Proportional	Increasing this value can improve the response	
	Position	performance and position precision. However	1~1000
9	Loop Gain	excessive value will cause vibration and overshoot.	/S
		The detailed value will be decided by the motor	, -
		type, load inertia etc.	
	Position	Increasing the value can reduce the position track	
	Feed	error, set value 100% means the total position error	
	Forward	is always zero under any frequency pulse. Increase	
10	Gain	this value can enhance the system response	0~100%
		performance, but will make the position loop unstable and cause possible vibration. Generally	
		the set value is 0 unless users require very high	
		response performance for specific applications.	
	Smooth	This parameter is used to set the time constant of	
	Constant for	low-pass filter for position feed forward gain. The	0~1000
11	position feed	function of this low-pass filter is to maintain the	×0.1ms
	forward	stability of position control.	
	Electronic	Under the control mode, users can matching	
	Gear Ratio	different types of pulse commands and achieve	
	(Numerator)	their desired resolutions (angle/pulse) by adjusting	
	N1	PA12 & PA13.	1
12		The electronic gear ratio can be calculated as the	1~ 30000
		following :N1/M1 =F2/(S1*P1)	50000
		P1:Number of pulses corresponding to 1mm in the	
		host controller	
		F2:Number of encoder pulses per circle (Default is	

		10000) S1:Screw pitch of the mechanical transmission (mm) The ideal range of the gear ratio is from 1/50 to 50.	
13	Electronic Gear Ratio (Denominato r) M1	Refer to parameter PA12	1~ 30000
14	Position command Pulse Input Type	 Note the revised parameters will only be effective after you turn the power off and on again in completion of the changes. There are three different types of pulse input: 0: pulse + direction. 1: CCW pulse + CW pulse. 2: AB phase pulse. Definitions of CCW and CW: face the motor, anti-clockwise direction is CCW(positive) while clockwise running direction is CW(negative). 	0~2
15	Position command Pulse Direction	0: Normal direction1: Negative direction	0~1
16	Positioning Completed Range	In PT mode, this parameter is used to monitor the pulse range for the completion of the position controlling. The servo drive will need to use this value to judge whether or not the position control is completed. In the position control mode, the COIN signal will be on when the leftover pulse of the position error is less then set value of PA16.	0~ 30000 pulse
17	Excessive Position Error Detection Range	Users can set position error detection range by adjusting this parameter. Under the position control mode, if the actual position error exceeds to the set value, the servo drive will send the alarm signal	0~ 30000 ×100 pulse
18	E17 / E4 Control bit	bit0: E4 control bit bit0 = 0, E4 is valid; Bit0 = 1, E4 is invalid. bit1: E17 control bit bit1 = 0, E17 is valid; Bit1 = 1, E17 is invalid.	00~11

	Circo e eth	This filter is used to except the resition commond	
19	Smooth Constant of Position Command	This filter is used to smooth the position command pulse, value means the smooth constant. Command pulse going through the filter won't cause any pulse lose, but result in command delays. When the set value is 0, this means the filter is disabled. This filter will be used under the following circumstances: • The host controller does not have a deceleration / acceleration function. • The electronic gear ratio is larger than 10. • The position frequency is low. ; • Step jumping and vibration occur when the motor is running.	0~ 30000 ×0.1Ms
20	Inhibition Function Selection	 PA20 = 0, the external DI is allowed to disable CCW and CW; that is, when the FSTP or RSTP input is at an active level, CCW or CW is disabled. If FSTP and RSTP are valid at the same time, an alarm ERR7 for inhibiting input is generated. PA20 = 1, CCW prohibition is valid. That is, when the FSTP input is at an active level, CCW is disabled. CW cannot be prohibited at this time. PA20 = 2, CW prohibition is valid. That is, when the RSTP input is at an active level, CCW is disabled. CCW cannot be prohibited at this time. PA20 = 3, CCW and CW prohibition are invalid. 	0~3
21	JOG Operation Command	Set the operation speed command for JOG control mode.	-3600~3 600 r/min
22	Torque filtering time constant	*Set the characteristics of torque instruction filter; *Used to suppress resonance generated by torque; *If the moment of inertia of the load is very large, PA22 can be increased appropriately. If the value is too large, the response will slow down, which may cause oscillation. *The smaller the value, the higher the cutoff frequency and the faster the response. If a higher torque response is required, the set value can be reduced appropriately.	0~1000 *0.1ms

I	0		
	Speed	0: External analog input(analog voltage between	
	Command	AS+,AS- to control the speed)	
	selection	1:select the 1 st speed command(determined by	
		PA24)	
		2: select the 2 nd speed command(determined by	
		PA25)	
		3: select the 3 rd speed command(determined by	
23		PA26)	0~5
		4: select the 4 th speed command(determined by PA27)	
		5:select the speed command via SC2, SC1	
		SC2=0, SC1=0, select the 1^{st} speed command	
		SC2=0, SC1=1, select the 2nd speed command	
		SC2=1, SC1=0, select the 3rd speed command	
		SC2=1, SC1=1, select the 4th speed command	
	1 st Speed	Set inner speed 1	-3600
24	Command		~3600
	Opd Oraca al		r/min
25	2 nd Speed Command	Set inner speed 2	-3600
25	Command		~3600 r/min
	3 rd Speed	Set inner speed 3	-3600
26	Command		~3600
	Command		r/min
	4 th Speed	Set inner speed 4	-3600
27	Command	•	~3600
			r/min
	Target Motor	1.this parameter is used to set the targeted speed	
	Speed	value;	
		2.Under the non position control mode, if the	
		detected motor speed is over the set value, the	0~3600
28		SCMP will be ON, otherwise, the SCMP is OFF.	0~3000 r/min
		3.There is no need to use this parameter under	1/11111
		position control mode	
		4.The motor speed has nothing to do with the	
		rotating directions.	
	Analog	Set the proportional relationship between analog	10~100
29	Torque	input voltage and the value of torque command.	(0.1V/10
	Command	This function is effective only under the torque	0%)
	Gain	control mode (PA4=2).	-

		The unit is 0.1V/100%.	
		The default is 50, which means it will produce	
		100% rated torque by inputting 5v voltage.	
	Direction of	0: The direction of the torque is CCW	
	Analog	·	
30	Torque	1: The direction of the torque is CW	0~1
	Command		
	Zero-offset	The value is the offset compensation for the analog	
	Compensatio	signal of torque command.	-2000
31	n for Torque		~2000
	Command		
	Max speed	In torque control mode, this setting will limit the	0.000
32	Limit under	max running speed of the servo motor.	0~3600 r/min
	torque mode		1/11111
	DO status	1.monitoring the output level status for the 3 DO	
	monitoring	ports	
		2.Bit0 corresponds to DO1; Bit1 corresponds to	
		DO2; Bit2 corresponds to DO3;Under the default	
33		parameters setting status: bit0=ALR ; bit1=coin;	111
		bit2=BRK	
		3.When Bitx=1,it means the related DO port output	
		high level	
		When Bitx=0, it means the related DO port	
	DI status	output low level.	
	DI status monitoring	1.Monitoring the input level status for the 4 DI ports	
	monitoring	2.Bit0 corresponds to DI1; Bit1 corresponds to DI2; Bit2 corresponds to DI3;Bit3 corresponds to DI4.	
		Under the default parameter setting status,	
34		bit0=SON; bit1=CLE/SC1; bit2=SC2; bit3=ALRS	1111
54		3.When Bitx=1,it means the related DI port input	
		high level	
		When Bitx=0, it means the related DI port input	
		low level.	
	Max speed	Limit the max speed of motor, when you've done	0 0000
35	limit of motor	the parameter settings, turn the power off and on	0~3600
		again to enable the changes.	r/min
26	Internal	Control the drive torque output,	5-4000/
36	torque limit	T max=PA36*T rated *1%.	5~400%
37	Negative	When negative torque arrived at the set point, the	5~300%
51	torque	TRQL signal output is active.But this value should	J~-3007/0

	arrived	not considered as the limited negative torque set	
	set point	point, the torque limit should be set by PA36.	
	Positive	1.Under the position control mode,PA38 is set as	
	torque	the positive torque arrived at the set point,theTRQL	
	arrived	signal output is active. But this value should not	
	set point/	considered as the limited positive torque set point.	
38	Maximum	2.under the trial run (PA4=3) and Jog	5~300%
	torque limit in	mode(PA4=4), PA38 is the limit parameter of the	
	test run and	max torque output. And the max drive output torque	
	JOG mode	will be the lower value between PA36 & PA38.	
	Min speed		
	limit for	PA4=1 means it's in analog speed control mode,	
39	Analog	this parameter is used to control the min speed of	0~1000
	speed	the motor.	r/min
	control mode		
	Acceleration	1.set value indicates the acceleration time for the	
	Time	motor to reach the speed from 0 to 1000r/min.	
		2.It has a linear feature.	
10		3. Only used under the speed control mode.	0~1000
40		4.If the drive is being used together with the	0Ms
		external position loop, please set PA40=0.	
		5.This parameter is effective when PA4=1 or	
		PA4=4.	
	Deceleration	1.set value indicates the acceleration time for the	
	Time	motor to reach the speed from 0 to 1000r/min.	
		2.It has a linear feature.	
41		3.Only used under the speed control mode.	0~1000
		4.If the drive is being used together with the	0Ms
		external position loop, please set PA40=0.	
		5.This parameter is effective when PA4=1 or	
		PA4=4. Stabilize the motor start up and stop set the	
	Acc/Dec S-curve	Stabilize the motor start-up and stop, set the S-curve continuous time for acceleration or	0~1000
42	S-curve	deceleration. This parameter is effective when	0~1000 0Ms
		PA4=1 or PA4=4.	UNIS
	Analog	Set the proportional relationship between analog	
	Speed	input voltage and the speed command.	10~300
43	Command	Only when PA4=1 and PA23=0, or PA4=2, the	0
	Gain	function is active.	r/min/V
			1,11111, V

44	Direction of analog Speed input Command	command.	0~1
45	Zero-offset Compensatio n for Analog Speed Command	This is the analog speed command zero speed clamp value.	-2000 ~2000
46	Low-pass Filter for Analog Command	 1.this is a low-pass filter working on analog input. 2.Increase the set value will down grade the response performance but eliminate the noise impact to the signal. 3.this parameter is only active under the following conditions. 1. PA4=1 and PA23=0 2. PA4=2. 	0~1000 ms
47	Enable Delay time of the electromagn etic Brake	Set the delay time between output terminal(BRK) ON to OFF and the actual current cut-off. This value shall not be lower than the mechanical brake delay time.	0~300 ×10Ms
48	Disable Delay Time of the electromagn etic Brake	Set the delay time between current cut-off and output terminal(BRK) OFF to ON. When the motor is running at a very high speed, wait until it slows down and enable the brake will protect the brake from potential damage. The actual time is the lowest one between PA48 and the required time for the motor to decrease the speed to the set value of PA49.	0~300 ×10Ms
49	Brake operating speed when the motor is running	Set the brake working speed from current cut-off to mechanical brake enabled,(output terminal BRK from ON to OFF)	0~3600 r/min
50	Sampling Gain for Bus Voltage	It is used to compensate the voltage offset for the input DC Bus. This parameter is not allowed to be changed.	10~300 0

						11
51	Dynamic Gear ratio	0:dynamic gear input terminal command, gear 1:dynamic gear input terminal IN INH is in an inva is set by PA PA12/PA13, wh the gear ratio is	0~1			
52	Electronic gear ration(numer ator)	The function is when there is IN				
53	SON Force enable position	0: the drive can 1:the drive can	0~1			
54	Z output pulse logic/ bandwidth select	<pre>bit0: Z pulse ou bit0 = 0, Z pulse bit0 = 1, Z pulse bit1: Z pulse ou bit1 = 0, positive bit1 = 1, negative</pre>	0~1			
55*	Position encoder AB signal output dividing factor	Encoder A/B sig	1~250			
	DO output effective electric level	This parameter output terminals				
		Symbol	DO3	DO2	DO1	
		default	(BRK)	(COIN)	(ALM)	
56		Control positionPA56.2PA56.1PA56.0PA56.2=0,BRK effective level is low;PA56.2=1,BRK effective level is high.PA56.1=0,COIN effective level is low;PA56.1=1,COIN effective level is high.PA56.0=0,ALM effective level is low;PA56.0=1,ALM effective level is high.				000~111

57	DO1(ALM)se If define	DO has three actual output terminals, 5 functions: PA57=1,DO1 is fined as ALM; servo is alarm; PA57=2,DO1 is defined as SRDY; servo is ready; PA57=3,DO1 is defined as COIN; when PA4=0, COIN means position reached, when PA4=1, it means speed reached. PA57=4,DO1 is defined as BRK; control brake PA57=5,DO1 is defined as TRQL; Torque arrived				1~5	
58	DO2(COIN) self define	Refer to PA57					1~5
59	DO3(BRK) self define	Refer to PA57				1~5	
60	Reserved						
61	Input filtering time constant	 Define the input filtering time constant. The lower this value is, the better response performance you will get, but in the meantime, it'll be very easy to introduce interference. The bigger this value is, the poorer response you will get, but you will get a better anti-interference performance. 				0~100 ms	
62	Input terminal DI effective electric level self define	This parameter is to define the electric level of input terminal DI:SymbolDI4DI3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1DefaultDefaultDi3DI2DI1definition(ALRS)(SC2)(CLE)(SON)ControlDi3Di4Di3Di2PA62.3=0,DI4 effective level is low;PA62.2=0,DI3 effective level is low;PA62.1=0,DI2 effective level is low;PA62.1=1,DI2 effective level is low;PA62.1=1,DI2 effective level is low;PA62.0=0,DI1 effective level is low;				of input	0000 ~1111
63	DI1(SON) self define	PA62.0=1,DI1 effective level is high; DI1 has 4 actual output terminals,with 8 different functions: PA63=1,DI1 is defined as SON, servo on; PA63=2,DI1 is defined as CLE/SC1/ZCLAMP; PA63=3,DI1 is defined as INH/SC2;				1~8	

		PA63=4,DI1 is defined as ALRS;	
		PA63=5,DI1 is defined as FSTP; PA63=6,DI1 is defined as RSTP;	
		PA63=7,DI1 is defined as AIR; Analog input	
		reverse.	
		PA63=8,DI1 is defined as control mode switching	
64	DI2(CLE) self define	Refer to PA63	1~8
65	DI3(SC2)self define	Refer to PA63	1~8
66	DI4(ALRS) self define	Refer to PA63	1~8
67	Motor thermal protection level	There are 5 levels of motor thermal protection, generally set automatically according to the motor model, the customer does not need to change.	1~5
68	Pulse window filtering	 Perform window filtering on the pulse signal PULS. Pulses with a width less than the set value will be filtered out. Increasing PA68 can increase the anti-interference ability of the drive pulse reception, but if it is set too large, it may filter out normal pulses, resulting in motor jitter. When most PLC controller pulse signal frequency is lower than 100khz, PA68 can be set to about 20 	0~250
69	Drive thermal protection level	There are two thermal protection level of the driver, which are usually set automatically, and the customer does not need to change it.	1~2

Note1: "*" next to the parameter numbers means this function may be "reserved" for some models, for instance,55*, it may not exist or just reserved in some models, the detailed information, please consult with our after sales service center or local distributors.

Note2: PA4 only have 0~5 of HSD2-050

Chapter 7 Motor Type Matching

Before you power the servo drive, please make sure the motor is properly selected and all parameters are set correctly, otherwise, it may cause malfunction, trigger the alarms off, or the motor may lose its control.

You need to input the password,(set PA0=302) before you modify the parameter PA1.

When you've done setting of PA1, please write(save) the parameters into servo drive(when the panel displays EE-SET, press the **Enter** key for 3 seconds until it displays "FINISH", this means the parameters are saved in the drive). Then power OFF and ON again, the set parameters will be effective.

Generally, please follow the following list when you are selecting the motor type:

Drive HSD2-020 is adaptive for 60, 80, 90, and 110 series motor. Drive HSD2-030 is adaptive for 80, 90, 110 and 130 series motor. Drive HSD2-050 is adaptive for 110, 130 and 150 series motor. Drive HSD2-065 is adaptive for 130, 150 and 180 series motor.

If client want to match other motors which is not produced by our company, please consult with your local distributor or our technical department.

7.1 Motor Type List for HSD2-020

	Motor model	Dowor	Torqu	Rated	Rated
Code		Power	е	Speed	Current
		(kw)	(Nm)	(rpm)	(A)
21	S60-2-006M30	0.2	0.6	3000	1.5
23	S60-2-013M30	0.4	1.3	3000	2.8
25	S60-2-019M30	0.6	1.9	3000	3.5
31	S80-2-013M30	0.4	1.3	3000	2.6
33	S80-2-024M30	0.75	2.4	3000	4.2
35	S80-2-033M30	1	3.3	3000	4.5
41	S90-2-024M30	0.75	2.4	3000	3
45	S90-2-035M20	0.75	3.5	2000	3
48	S90-2-040M25	1	4	2500	4
51	S110-2-020M30	0.6	2	3000	4
53	S110-2-040M30	1.2	4	3000	5
56	S110-2-060M20	1.2	6	2000	6
62	S130-2-050M15	0.75	2.4	1500	3.5
others	S80-2-024M30	0.75	2.4	3000	4.2

Table 7-1 Motor type list for HSD2-020

7.2 Motor Type List for HSD2-030

		5			
		Powe	Torque	Rated	Rated
Code	Motor model	r	rorquo	Speed	Current
		(kw)	(Nm)	(rpm)	(A)
31	S80-2-013M30	0.4	1.3	3000	2.6
33	S80-2-024M30	0.75	2.4	3000	4.2
35	S80-2-033M30	1	3.3	3000	4.5
41	S90-2-024M30	0.75	2.4	3000	3
45	S90-2-035M20	0.75	3.5	2000	3
48	S90-2-040M25	1	4	2500	4
51	S110-2-020M30	0.6	2	3000	4
53	S110-2-040M30	1.2	4	3000	5
55	S110-2-050M30	1.5	5	3000	6
56	S110-2-060M20	1.2	6	2000	6
61	S130-2-040M25	1	4	2500	4
62	S130-2-050M15	0.75	2.4	1500	3.5
63	S130-2-050M20	1	5	2000	4.5
64	S130-2-050M25	1.3	5	2500	5
65	S130-2-050M30	1.5	5	3000	6
67	S130-2-060M25	1.5	6	2500	6
69	S130-2-077M20	1.6	7.7	2000	6
72	S130-2-100M10	1	10	1000	5
73	S130-2-100M15	1.5	10	1500	6
Others	S110-2-040M30	1.2	4	3000	5

Table 7-2 Motor type list for HSD2-030

7.3 Motor Type List for HSD2-050

	Motor model	Power	Torque	Rated	Rated
Code			Torque	Speed	Current
		(kw)	(Nm)	(rpm)	(A)
51	S110-2-020M30	0.6	2	3000	4
53	S110-2-040M30	1.2	4	3000	5
55	S110-2-050M30	1.5	5	3000	6
56	S110-2-060M20	1.2	6	2000	6
58	S110-2-060M30	1.8	6	3000	8
61	S130-2-040M25	1	4	2500	4
63	S130-2-050M20	1	5	2000	4.5
64	S130-2-050M25	1.3	5	2500	5
65	S130-2-050M30	1.5	5	3000	6
67	S130-2-060M25	1.5	6	2500	6
69	S130-2-077M20	1.6	7.7	2000	6
70	S130-2-077M25	2	7.7	2500	7.5
71	S130-2-077M30	2.4	7.7	3000	9
72	S130-2-100M10	1	10	1000	5
73	S130-2-100M15	1.5	10	1500	6
75	S130-2-100M25	2.6	10	2500	10
76	S130-2-100M30	3.0	10	3000	12.5
78	S130-2-150M15	2.3	15	1500	9.5
79	S130-2-150M25	3.8	15	2500	17
82	S150-2-150M20	3	15	2000	14
83	S150-2-150M25	3.8	15	2500	17
86	S150-2-180M20	3.6	18	2000	16.5
89	S150-2-230M20	4.7	23	2000	20.5
92	S150-2-270M20	5.5	27	2000	20.5
Others	S130-2-077M20	1.6	7.7	2000	6

Table 7-3 Motor type list for HSD2-050

7.4 Motor Type List for HSD2-065

Code	Motor model	Power	Torque	Rated Speed	Rated Current
		(kw)	(Nm)	(rpm)	(A)
65	S130-2-050M30	1.5	5	3000	6
67	S130-2-060M25	1.5	6	2500	6
69	S130-2-077M20	1.6	7.7	2000	6
70	S130-2-077M25	2	7.7	2500	7.5
71	S130-2-077M30	2.4	7.7	3000	9
72	S130-2-100M10	1	10	1000	5
73	S130-2-100M15	1.5	10	1500	6
75	S130-2-100M25	2.6	10	2500	10
78	S130-2-150M15	2.3	15	1500	9.5
79	S130-2-150M25	3.8	15	2500	17
80	S130-2-150M30	4.5	15	3000	23
82	S150-2-150M20	3	15	2000	14
83	S150-2-150M25	3.8	15	2500	17
86	S150-2-180M20	3.6	18	2000	16.5
89	S150-2-230M20	4.7	23	2000	20.5
92	S150-2-270M20	5.5	27	2000	20.5
94	S180-2-172M15	2.7	17.2	1500	10.5
95	S180-2-190M15	3.0	19	1500	12
96	S180-2-215M20	4.5	21.5	2000	16
97	S180-2-270M15	4.3	27	1500	16
98	S180-2-350M10	3.7	35	1000	16
99	S180-2-350M15	5.5	35	1500	19
Others	S150-2-150M15	2.3	15	1500	9.5

Table 7-4 Motor type list for HSD2-065

Chapter 8 Alarm, Protection Function & Troubleshooting

When any trouble occurs, the "Err xx" would be shown on the digital keypad and blink. "xx" is the code for the error kind. The common errors are Err 3, Err 9, Err 11, Err 13, Err 17 and Err 38, which caused by improper wiring or mechanical problem.

8.1 Alarm Code Check List

Display Code	Fault Name	Fault Description	
	Normal	There is no error.	
1	Over speed	Motor speed exceeds to set value	
2	Over voltage	The voltage of the main circuit is higher than the standard voltage.	
3	Under voltage	The voltage of the main circuit is lower than the standard voltage.	
4	Excessive Deviation of position command	Position control deviation value exceeds to the set value	
5	Internal incorrect parameter settings	Wrong model selection for servo drive or motor, or wrong settings for drive/motor	
6	Wrong model type for the motor	The set model type can't be matched with the motor	
7	Drive inhibition error	Both inhibition input for CCW and CW are OFF	
8	Position deviation counter overflow	Position counter overflow absolute value exceeds to 2 ³⁰	
9	Encoder error	The encoder produces abnormal pulse.	
11	Current response fault	Current error has exceeded the specified value for a long time.	
12	Over current	The current of the main circuit is more than the instantaneous current of the motor and cause short circuit.	
13	Drive overheat for a long time	Drive overload, the temperature of drive is too high (I ² t inspection)	
14	Breaking time being too long	Break circuit is working for a long period of time.	

15	Breaking function is	The breaking action has been enabled too		
15	enabled too often	often.		
17	Spood rosponso fault	Speed error has exceeded the specified value		
17	Speed response fault	for a long time.		
19	Warm reset	System warm reset		
20	EE-PROM error	An error occurs when writing the current		
20		settings into EE-PROM.		
21	DI function set error	Digital input port function setting duplicated		
22	DO function set error	Digital output port function setting duplicated		
23	Current sensor adjustment	Adjusted value of the current sensor exceeds		
23	error	the limit of its allowable setting value.		
29	Overload for motor torque	Servo motor is overload.		
30	Encoder pulse Z lose	The pulse Z of the encoder is being lost.		
32		The signal of U,V,W (for encoder interface) are		
52	Encoder U,V,W signal error	in error		
37	Instantaneous overheat for	The instantaneous load of the motor is		
31	motor	overload.		
38	Long term motor overheat	The motor is overload for a long time.		
10, 16, 18, 24, 25, 26, 27, 28, 31, 33,		Reserved		
34, 35, 3	36			

8.2 Potential Cause and Corrective Actions

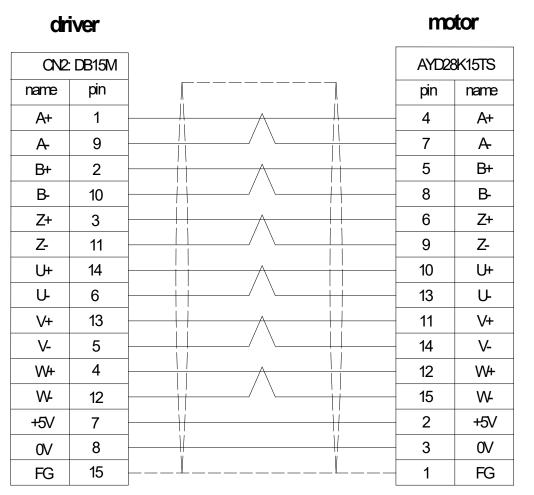
Generally, when the alarm occurs, you can power off and on the drive to clear the error, and the drive back to work normally. If this doesn't work, and the alarm repeats, please follow up the following solutions or contact your local distributors if necessary.

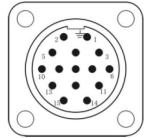
Code	Fault Name	Cause	Corrective Actions
		Improper input Pulse, or wrong gear ratio setting	Check the pulse frequency and the electronic gear ratio
		The load inertia is	Decrease the load inertia
Err1	Over speed	excessive	Increase the Accel/Decel time
		Encoder fault	Replace the motor
		Encoder cable fault	Replace the cable
		Incorrect parameter	Reset the parameters and
		settings	modify the settings again
	Over voltage	Servo drive default	Replace the drive; check the
		U V W PE wiring error	wiring or replace the cables
Err2		The power voltage is too high	Check the power supply.
		The power waveform is abnormal	
		Servo drive is damaged	Replace the drive
		The power voltage is too low.	Check the power supply.
Err3	Under voltage	Transformer capacity is not	Replace the transformer by a
		enough.	larger one
		Poor contact of RST	Check and rewire the related
		terminal wiring	cables
	Executive	Encoder cable or encoder fault	Replace the cable or motor
Err4	Excessive position deviation	The stiffness is not enough	Increase the set value of PA5 and PA9
		The output torque of motor	Check the torque limit

 Table 8-2
 Corrective actions for trouble shooting

HSD2 Series AC Servo Drive

			Decrease the load
			Replace and upgrade the
			power level of the drive and
			motor
		Improper command pulse	Decrease the pulse frequency.
	Parameters set	The parameters in the	
Err5		drive is or are being	Reset the parameters
	error	modified wrongly	
Err6	Wrong model	Wrong model type setting	Please choose the right motor
EIIO	type setting for the motor	for the motor	type.
		Inhibition signal for both	Check the digital input signal
	Drive inhibition	CCW and CW are	and wiring
Err7	abnormal alarm	disconnected	
		Enable Inhibition function	Disable the function
		is ON	
	Position counter overflow	The motor is being stuck	Check the mechanical structure
Err8		by the mechanical parts	
		Pulse signal is abnormal	Check the pulse signal
		Encoder or drive being	
		damaged	Replace the motor or drive.
Err9	Encoder error	Encoder cable damaged or	Replace the cable
		doesn't match the spec	
		The encoder cable is too long	Shorten the cable.
		Servo motor is being stuck.	Check the mechanical parts
		Wrong wring between U, V	
	Common the second second	and W terminals	Check the wiring
Err11	Current response fault	Poorly grounded	Check the grounding
		The lead wiring of U V W	
		from the motor side is	Replace the motor
		wrong	
		Short-circuit between U, V	
Err12	Over current	and W terminals	Check the wiring
	<u> </u>	1	1


		Drive overload	Replace ad upgrade the drive
		Encoder cable or encoder fault	Replace the encoder cable
		Servo drive is damaged	Replace the drive
Err13	Drive overheat for a long term	Drive is running with overload	Decrease the load or replace the current drive with a bigger powered one.
		Brake circuit fault or voltage detection fault	Replace the drive
Err14	Brake error	System inertia is too big, drive ON and OFF too often.	Set PA34 correctly, install a proper external brake resistor between P and C terminal. Increase the acceleration and deceleration time constant; reduce the load inertia
Err15	Breaking action is enabled too often	Load inertia is too high, servo on and off too often.	Under the speed control mode,increase the set value of PA40,PA41,PA42. Under the position control mode,set proper Accel/Decel curve for the host controller. Reduce the load inertia Replace the motor.
		Motor being stuck, drive fault	Check the mechanical parts, check the drive or replace the drive
Err17	Speed response fault	Interval time between start and stop is too short.	Set the Accel and Decel time constant correctly
		The lead wiring of U V W from the motor side is wrong	Replace the motor
Err19	Warm reset	The power supply is unstable	Check wiring or replace the drive
Err20	EEPROM error	Servo drive fault	Replace the servo drive


Err21	DI function set error	Check PA63,PA64,PA65,PA66, there may be duplication among these 4 parameters.	Set right parameters
Err22	DO function set error	Check PA57,PA58, PA59, there may be duplication among these 3 parameters.	Set right parameters
Err23	Current sensor adjustment fault	Servo drive fault	Replace the servo drive
		Overload	Check the load
Err29	Overload for	Motor type doesn't match with the drive	Match the drive with a proper motor
EIIZ9	motor torque	Parameter is being set incorrectly	Increase the torque limit value properly within the safety allowed range
	Encoder Z signal pulse lose	Encoder being damaged	Replace the servo motor
Err30		Encoder cable improper shielding or poor encoder cable communication	Replace the encoder cable
		Shielding ground cable fault	Recheck interface and I/O circuit
		Encoder U V W signal damaged	Replace the motor
Err32	U,V,W signal error for encoder	Encoder cable improper shielding or poor encoder cable communication	Replace the encoder cable
		Encoder signal interface circuit fault	Replace the drive
	Instantanasus	Overload for the motor	Decrease the load
Err37	Instantaneous overheat for motor	Short circuit for the motor	Recheck the wiring or replace the motor
		Motor type(model) is wrong	Choose a proper motor to match the drive

Err38		Motor overload, or wrong	Decrease the load or choose a	
		type of motor being	proper spec of motor to match	
	Motor overheat	connected with the drive	the drive	
	for a long time	Encoder cable or encoder	Replace the encoder cable or	
		fault; drive current		
		detection fault	motor; replace the drive	

Chapter 9 Connection to Motor

Our HSD2 series servo drive is only applicable with 2500ppr incremental photoelectric encoder. If you have purchased both our servo drive and motor, then the encoder and encoder cable and power cable will be included as our agreed standard package. For special requirement and our users may need to make the encoder cable or modify the cable, please follow up the following diagram for connections. Please use proper shield cable if you want to make encoder cable by yourself.

Diagram 9-1 Connecting diagram HSD2 series drive to motor encoder

Chapter 10 System Connection

The connection between HSD2 Driver and HNC-602 CNC control system show as below:

control system

driver

CN5: DB25F			CN	CN2:DB26M	
name	pin		pin	name	
XOP+	6		- 26	PULS+	
XCP-	18		- 18	PULS-	
XDIR+	7		- 24	SIGN+	
XDIR-	19		- 25	SIGN	
XZO+	5		2	OZ+	
XZO-	17		- 12	OZ-	
ALM	12		- 21	ALM	
0V	13/23		- 23	DOCOM	
INIT	10		- 14	SON	
		ii ii			
+24V	11		- 16	COM+	
FG	case		9	PE	
			CN	CN2: DB26M	
ZOP+	3		- 26	PULS+	
ZOP-	15		- 18	PULS-	
ZDIR+	4		24	SIGN+	
ZDIR-	16		- 25	SIGN	
ZZO+	2		2	OZ+	
ZZO-	14		12	OZ-	
ALM	12		21	ALM	
0V	13/23		- 23	DOCOM	
INIT	10		- 14	SON	
+24V	11		- 16	COM+	
FG	case		9	PE	

Thanks for choosing HNC product. Any technique support, PLS feel free to contact our support team Tel: 86(20)84898493 Fax: 86(20)61082610 URL: www.hncelectric.com Email: <u>support@hncelectric.com</u>

