Page 1 of 41

Report Version: 1.0

TEST REPORT

Applicant: Guangzhou Auctech Automation Technology Ltd

Address of Applicant: Hongshi Business Building, 11 Kehua Road, SCI-TECH

Industry Park, Taihe Town, Baiyun District, Guangzhou, CHINA

Equipment Under Test (EUT)

Product Name: Motion Controller

Model No.: HMC-S3-22N00, HMC-S3B-22N00, HMC-S3E-22N00, HMC-

G300-2000, HMC-G301-2000, HMC-G310-3000, HMC-G311-3000, HMC-G320-3100, HMC-G321-3100, HMC-G360-3100, HMC-G361-3100, TM6-ECT-32DM-N, TM6-ECT-4PM, TM6-ECT-4HC, TK6-32DI, TK6-32DO-P, TK6-32DO-N, TK6-32DM-N, TK6-16DO-R, TK6-8HAI-C, TK6-8HAI-V, TK6-8HAI-B, TK6-

8HAO-C, TK6-8HAO-V, TK6-4PT, TK6-4JK

Applicable standards: EN 55032: 2015+A11:2020

EN 55035: 2017+A11:2020

Date of sample receipt: August 9, 2022

Date of Test: August 9, 2022 To August 26, 2022

Date of report issue: August 29, 2023

Test Result: PASS *

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EU Declaration of Conformity and compliance with all relevant EU Directives.

Authorized Signature

Kevin Wang Laboratory Manager ϵ

^{*}In the configuration tested, the EUT complied with the standards specified above.

Shenzhen EBO Testing Center
Tel: +86-755-33126608
Email:ebo@ebotest.com Web:www.ebotest.com

Report No.: EBO2208068-E171-1

Page 2 of 41

Report Version: 1.0

2 Version

Version No.	Date	Description
00	August 26, 2022	Original
01	August 29, 2023	New report (Change Applicant , Change Manufacturer, Address, Brand Name, Product Name, Model Name)

Prepared By:

Gary Wang

Project Engineer

Reviewer

Date:

Reviewed By:

win wong

Date:

August 29, 2023

Report Version: 1.0

Page 3 of 41

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3	CON	TENTS	3
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
		CLIENT INFORMATION	
		GENERAL DESCRIPTION OF E.U.T	
	5.3	Test mode	5
	5.4	DESCRIPTION OF SUPPORT UNITS	5
	5.5	DEVIATION FROM STANDARDS	5
	5.6	ABNORMALITIES FROM STANDARD CONDITIONS	5
	5.7	MONITORING OF EUT FOR ALL IMMUNITY TEST	5
6	TEST	INSTRUMENTS LIST	6
7	EMIS	SION TEST RESULTS	9
		RADIATED EMISSION	
		CONDUCTED EMISSION	
	7.2.1	Signal ports and Telecommunication ports	
8		JNITY TEST RESULTS	
U			
		GENERAL PERFORMANCE CRITERIA DESCRIPTION IN EN 55035	
		PERFORMANCE CRITERIA DESCRIPTION FOR BROADCAST RECEPTION FUNCTION	
		PERFORMANCE CRITERIA DESCRIPTION FOR PRINT FUNCTION	
		PERFORMANCE CRITERIA DESCRIPTION FOR SCAN FUNCTION	
		PERFORMANCE CRITERIA DESCRIPTION FOR DISPLAY AND DISPLAY OUTPUT FUNCTIONS	
		PERFORMANCE CRITERIA DESCRIPTION FOR MUSICAL TONE GENERATING FUNCTION GENERAL PERFORMANCE CRITERIA DESCRIPTION FOR NETWORKING FUNCTIONS	
		PERFORMANCE CRITERIA DESCRIPTION FOR NETWORKING FUNCTIONS PERFORMANCE CRITERIA DESCRIPTION FOR AUDIO OUTPUT FUNCTION	
		PERFORMANCE CRITERIA DESCRIPTION FOR AUDIO OUTPUT FUNCTION	
		ELECTROSTATIC DISCHARGE	_
	8.11	RADIATED IMMUNITY	
	-	ELECTRICAL FAST TRANSIENTS	
	8.12.		
	8.13	Surges	
	8.13.		
		Conducted Immunity	
	8.14.		
9	PHO [°]	TOGRAPHS OF THE EUT	39

Report Version: 1.0

Page 4 of 41

4 Test Summary

Test Item	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission	EN 55032	EN 55032	Class A	PASS
Conducted Emission	EN 55032	EN 55032	Class A	PASS
Electrostatic discharges	EN 55035	EN 61000-4-2	4kV Contact Discharge 8kV Air Discharge	PASS
Radiated Immunity (80MHz-1GHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz,)	EN 55035	EN 61000-4-3	3V/m 80%, 1kHz, AM	PASS
Electrical Fast Transients	EN 55035	EN 61000-4- 4	AC±1.0kV, Earth ±2.0kV Signal Line 0.5kV	PASS
Surges	EN 55035	EN 61000-4-5	1.2/50µs Tr/Td 1kV Line to Line 2kV Line to Ground	PASS
Conducted Immunity	EN 55035	EN 61000-4-6	3Vrms (emf), 80%, 1kHz Amp. Mod.	PASS

Remark:

Pass: Comply with the essential requirements in the standard.

N/A: Not applicable.

Report Version: 1.0

Page 5 of 41

5 General Information

5.1 Client Information

Applicant:	Guangzhou Auctech Automation Technology Ltd	
Address of Applicant:	Hongshi Business Building, 11 Kehua Road, SCI-TECH Industry Park, Taihe Town, Baiyun District, Guangzhou, CHINA	
Manufacturer:	Guangzhou Auctech Automation Technology Ltd	
Address of Manufacturer:	Hongshi Business Building, 11 Kehua Road, SCI-TECH Industry Park, Taihe Town, Baiyun District, Guangzhou, CHINA	

5.2 General Description of E.U.T

Product Name:	Motion Controller	
Brand Name:	(AUCTECH	
Model No.:	HMC-S3-22N00, HMC-S3B-22N00, HMC-S3E-22N00, HMC-G300-2000, HMC-G301-2000, HMC-G310-3000, HMC-G311-3000, HMC-G320-3100, HMC-G321-3100, HMC-G360-3100, HMC-G361-3100, TM6-ECT-32DM-N, TM6-ECT-4PM, TM6-ECT-4HC, TK6-32DI, TK6-32DO-P, TK6-32DO-N, TK6-32DM-N, TK6-16DO-R, TK6-8HAI-C, TK6-8HAI-V, TK6-8HAI-B, TK6-8HAO-C, TK6-8HAO-V, TK6-4PT, TK6-4JK	
	Remark: All models are identical in the same PCB layout, interior structure and electrical circuits. The only differences are the model name and appearance color for commercial purpose.	
Test Model No.:	HMC-S3-22N00	
Power Supply:	DC 12V-24V	

5.3 Test mode

On mode:	Keep the EUT in the operation status.
LAN mode:	Keep the EUT in LAN mode.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number
MEILI	DC POWER SUPPLY	MCH-305A	011121168

5.5 Deviation from Standards

None

5.6 Abnormalities from Standard Conditions

None.

5.7 Monitoring of EUT for All Immunity Test

	•
Visual:	Monitor the EUT operating status.
Audio:	N/A

Page 6 of 41

Report Version: 1.0

6 Test Instruments List

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	N/A	N/A	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	ROHDE & SCHWARZ	ESRP	GTS602	Mar. 18 2022	Mar. 17 2023	
4	BiConiLog Antenna	SCHWARZBECK	VULB 9168	GTS606	Mar. 18 2022	Mar. 17 2023	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 22 2022	June. 21 2023	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 22 2022	June. 21 2023	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 22 2022	June. 21 2023	
9	Coaxial Cable	GTS	N/A	GTS211	June. 22 2022	June. 21 2023	
10	Coaxial cable	GTS	N/A	GTS210	June. 22 2022	June. 21 2023	
11	Coaxial Cable	GTS	N/A	GTS212	June. 22 2022	June. 21 2023	
12	Amplifier(100kHz-3GHz)	N/A	LNA 0920N	GTS605	Mar. 18 2022	Mar. 17 2023	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 22 2022	June. 21 2023	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 22 2022	June. 21 2023	
15	Band filter	Amindeon	82346	GTS219	June. 22 2022	June. 21 2023	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 22 2022	June. 21 2023	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 22 2022	June. 21 2023	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 22 2022	June. 21 2023	
19	Splitter	Agilent	11636B	GTS237	June. 22 2022	June. 21 2023	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 22 2022	June. 21 2023	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 8 2021	Oct. 7 2022	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 8 2021	Oct. 7 2022	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 8 2021	Oct. 7 2022	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 22 2022	June. 21 2023	

Con	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.14 2022	May.13 2025	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 22 2022	June. 21 2023	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 22 2022	June. 21 2023	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 22 2022	June. 21 2023	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 22 2022	June. 21 2023	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 22 2022	June. 21 2023	

Shenzhen EBO Testing Center
Tel: +86-755-33126608

Email:ebo@ebotest.com Web:www.ebotest.com

Report No.: EBO2208068-E171-1

Page 7 of 41

Report Version: 1.0

9 ISN SCHWARZBECK NTFM 8158 GTS565 June. 22 2022 June.	21 2023
--	---------

ESD	ESD						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	ESD Simulator	KIKUSUI	KES4021A	GTS242	June. 22 2022	June. 21 2023	
2	Thermo meter	KTJ	TA328	GTS243	June. 22 2022	June. 21 2023	

Con	Conducted Immunity								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Signal Generator	ROHDE & SCHWARZ	SMB 100A	GTS553	June. 22 2022	June. 21 2023			
2	CDN	LionCEL	CDN-M3-16	GTS554	June. 22 2022	June. 21 2023			
3	CDN	CYBERTEK	EM 5070	GTS559	June. 22 2022	June. 21 2023			
4	Power amplifier	rflight	NTWPA-00010475	GTS555	June. 22 2022	June. 21 2023			
5	ATT	SUNWAVE	SJ-50-06DB	GTS556	June. 22 2022	June. 21 2023			
6	Clamp	SCHAFFNER	KEMZ 801	GTS558	June. 22 2022	June. 21 2023			

EFT, S	EFT, Surge, Voltage dips and Interruption							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	EMTEST system	EMTEST	UCS500N	GTS239	June. 22 2022	June. 21 2023		
2	Clamp	EMTEST	HFK	GTS557	June. 22 2022	June. 21 2023		
3	Thermo meter	KTJ	TA328	GTS238	June. 22 2022	June. 21 2023		

Radia	Radiated Immunity							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Fully-Anechoic Chamber 2	Chang Zhou Zhong Shuo	854	SEM001-05	April. 09, 2022	April. 08, 2023		
2	Power Sensor	Rohde & Schwarz	NRP-Z91	SEM009-09	April. 09, 2022	April. 08, 2023		
3	Stacked LogPer Broadband Antenna (70MHz-10GHz)	Schwarzbeck	STLP 9129	SEM003-25	N/A	N/A		
4	Signal Generator (9kHz-6GHz)	Rohde & Schwarz	SMB100A	SEM006-11	April. 09, 2022	April. 08, 2023		
5	Broadband Amplifier (80MHz-1GHz)	Rohde & Schwarz	BBA150-BC250	SEM005-12	Sep. 22 2021	Sep. 21 2022		
6	Broadband Amplifier(800MHz- 3GHz)	Rohde & Schwarz	BBA150-D110	SEM005-13	April. 09, 2022	April. 08, 2023		
7	Broadband Amplifier(2.5GHz- 6GHz)	Rohde & Schwarz	BBA150-E60	SEM005-16	April. 09, 2022	April. 08, 2023		
8	Measurement Software	Rohde & Schwarz	EMC32 V9.25.00	N/A	N/A	N/A		

Shenzhen EBO Testing Center Tel: +86-755-33126608

36-755-33126608 Report Version: 1.0

Email :ebo@ebotest.com Web :www.ebotest.com Page 8 of 41

Report No.: EBO2208068-E171-1

Ge	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 22 2022	June. 21 2023	
2	Barometer	ChangChun	DYM3	GTS255	June. 22 2022	June. 21 2023	

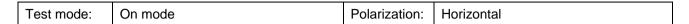
Report Version: 1.0 Page 9 of 41

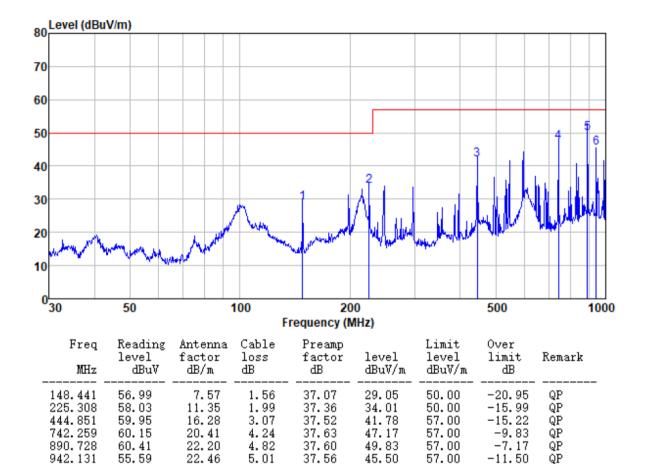
Emission Test Results

7.1 Radiated Emission

Test Requirement:	EN 55032				
Test Method:	EN 55032				
Test Frequency Range:	30MHz to 1GHz				
Class / Severity:	Class A				
Test site:	Measurement Distance: 3m	1			
Limit:					
	Frequency	Limit (dBµV/m @3	· · ·		
	30MHz-230MHz 230MHz-1GHz	50.00 57.00	Quasi-peak Quasi-peak		
Test setup:	ZOUNTIZ-TOTIZ OT.300 Quasi-peak Antenna Tower Antenna Tower Test Receiver Angeleen Controlles				
Test Procedure:	 The radiated emissions test was conducted in a semi-anechoic chamber. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements 				
Test environment:	were performed for both Temp.: 25 °C Hu	mid.: 52%	Press.: 1 012mbar		
Measurement Record:	Uncertainty: ± 4.50dB				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details.				
Test results:	Pass				

Shenzhen EBO Testing Center Tel: +86-755-33126608


Email:ebo@ebotest.com Web:www.ebotest.com

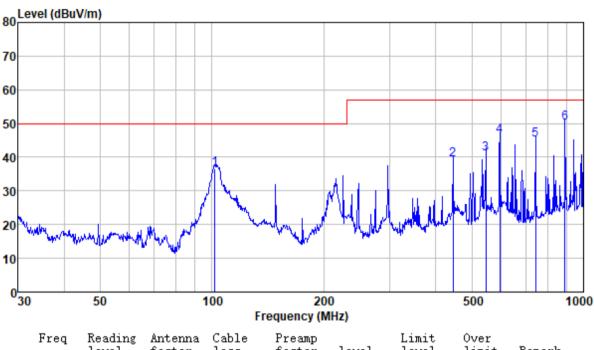

Report No.: EBO2208068-E171-1

Page 10 of 41

Report Version: 1.0

Measurement Data

Shenzhen EBO Testing Center Tel: +86-755-33126608

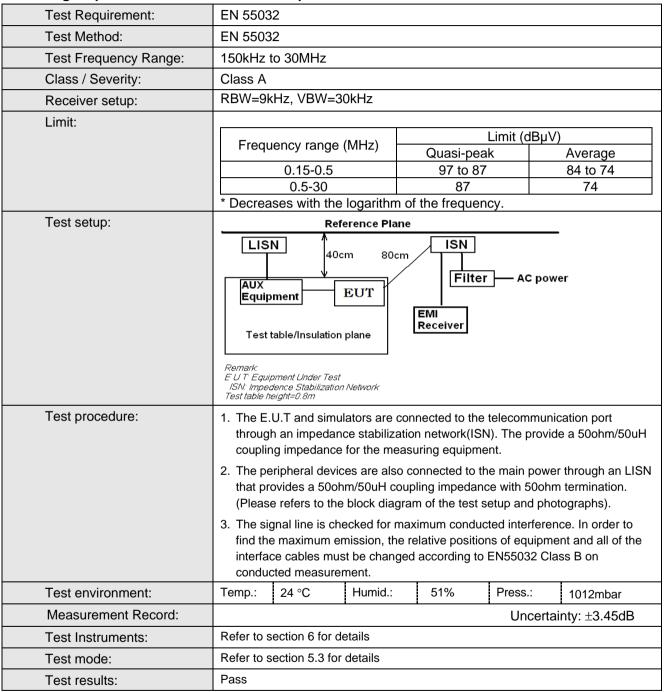

Email:ebo@ebotest.com Web:www.ebotest.com

Report No.: EBO2208068-E171-1

Page 11 of 41

Report Version: 1.0

Test mode: On mode Polarization: Vertical


Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark	
101.644 444.851	60.23 57.44	11.99 16.28	1.21 3.07	36.73 37.52	36.70 39.27	50.00 57.00	-13.30 -17.73	QP QP	-
545.183 595.133 742.259	56.58 60.82 58.28	18.34 19.39 20.41	3.50 3.70 4.24	37.52 37.54 37.63	40.90 46.37 45.30	57.00 57.00 57.00	-16.10 -10.63 -11.70	QP QP QP	
890.728	60.84	22.20	4.82	37.60	50.26	57.00	-6.74	QΡ	

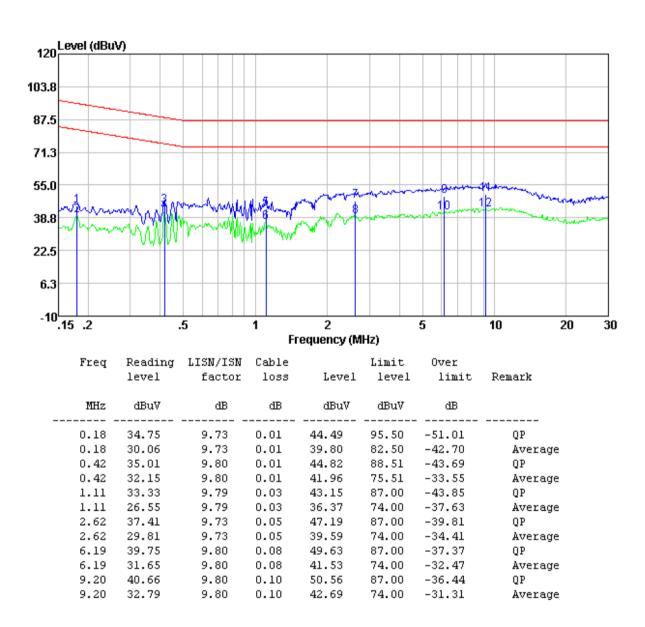
Report Version: 1.0

Page 12 of 41

7.2 Conducted Emission

7.2.1 Signal ports and Telecommunication ports

Shenzhen EBO Testing Center
Tel: +86-755-33126608
Email:ebo@ebotest.com Web:www.ebotest.com


Report No.: EBO2208068-E171-1

Page 13 of 41

Report Version: 1.0

Measurement Data

Test mode:	LAN mode
------------	----------

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Report Version: 1.0

Page 14 of 41

8 Immunity Test Results

8.1 General Performance Criteria Description in EN 55035

Criterion A: The equipment shall continue to operate as intended without operator intervention.

No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended.

The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Criterion B: During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended.

The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Criterion C: Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report Version: 1.0

Page 15 of 41

8.2 Performance Criteria Description for Broadcast reception function

The broadcast reception function shall comply with the general performance criteria given in Clause 8 and any relevant annex with the deviations defined in Table A.2.

NOTE For the continuous RF electromagnetic field immunity test specified in the table clauses 1.2 and 1.3, deviations apply for in-band frequencies. The deviations depend on the class of the broadcast receiver (Group 1 or 2) and are defined in Table A.2.

Table A.2 - Modified test levels for performance criterion A for the broadcast reception function

Performance Test type criteria table clause		Group 1	Group 2	
		The disturbance level is reduced to 1 V/m for in-band frequencies.		
А	2.1 3.1 4.1	The disturbance level is reduced to 1 V for in-band frequencies.	No test 2.1 requirements apply	

In-band is defined as the entire tuneable operating range of the selected broadcast reception function.

The tuned channel ± 0.5 MHz (lower edge frequency -0.5 MHz up to the upper edge frequency +0.5 MHz of the tuned channel) is excluded from testing.

NOTE In some countries, there is a requirement to test the tuned channels. Refer to the relevant regional requirements for guidance.

Page 16 of 41

Report Version: 1.0

8.3 Performance Criteria Description for Print function

Criterion A Apply criterion A as defined in 8.2. Additionally, the following shall not occur as a consequence of the application of the disturbance:

- change of operating state;
- unintended pausing of the print operation:
- a change of print quality or legibility, as appropriate to the test pattern;
- change of character font;
- · unintended line feed:
- · unintended page feed;
- · paper feed failure.

Criterion B

Apply criterion B as defined in 8.3 with the following specifics and additional limitations.

Paper feed failures are allowed only if, after removal of the jammed sheets, the job is automatically recovered and there is no loss of printed information.

Any low-quality print output caused by the application of the disturbance shall not continue beyond the sheet of media being printed, or beyond the typical length of a finished page or sheet printed from continuous roll media.

False indicators are permitted during the test provided that a normal operator response to that false indicator is simple (such as pressing a button). False indicators are not acceptable if they would cause the user to discard printing supplies such as ink, toner or paper, when those supplies are actually not empty or faulty. Any false indicator shall either clear automatically or after the operator's response.

After the disturbance, the print function may print the remainder of the print job at a quality level within the manufacturer's specifications. Alternately, the print function may halt processing of a print job as a result of the disturbance, but only if the operator is capable of reprinting the job (for example, a fax printing job where the image to be printed still resides in local memory). Automatically restarting the print job from the beginning is also acceptable. In any scenario, the pairing of front and back images during double-sided printing shall be correct.

Criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report Version: 1.0

Page 17 of 41

8.4 Performance Criteria Description for Scan function

Criterion A Apply criterion A as defined in 8.2. Additionally, the following shall not occur as a consequence of the application of the test:

- •change of settings, such as which side(s) of the page to be scanned, colour or monochrome, and resolution;
- corruption of the image, for example stretching, compressing or change in colour;
- · paper feed failures;
- errors in the reading of bar codes.
- Criterion B Apply criterion B as defined in 8.3 with the following specifics and additional limitations:
 - Document feed failures are allowed only if the original documents are undamaged and, after removal of the jammed sheets, the job is automatically recovered and there is no loss of scanned information.
 - During the test, the representation of the image shall not be degraded such that reading mistakes occur.
- Criterion C Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page 18 of 41

Report Version: 1.0

8.5 Performance Criteria Description for Display and display output functions

Performance criterion A for continuous radiated and conducted disturbances tests

Apply criterion A as defined in 8.2. Additionally, an increase in any degradation greater than just perceptible by observation of the image shall not occur as a consequence of the application of the test. Examples of such degradations are:

- superimposed patterning;
- · positional disturbances due to synchronisation errors;
- geometric distortion;
- · change of contrast or brightness;
- · picture artefacts;
- · freezing or disturbance of motion;
- · image loss;
- · video data or decoding errors.

Performance criterion A for the power frequency magnetic field tests

Alternative 1: A continuous magnetic field of 1 A/m:

The jitter (in mm) shall not exceed the value $\frac{(\text{character height in mm} + 0,3) \times 2,5}{33.3}$

Alternative 2: An increased power frequency magnetic field ≤ 50 A/m:

The amplitude of the disturbing field shall be increased by a factor K, where $1 \le K \le 50$. The jitter shall not exceed K times the value given in alternative 1. The value of K should be chosen to avoid saturation of any magnetic screening materials.

When the EUT is subjected to fields above K = 1 and the performance criteria are satisfied for all relevant functions of the EUT, the EUT shall be deemed to satisfy the requirement. When the EUT is subjected to fields above K = 1 and the display function is shown to meet these performance criteria, but the performance criteria for other relevant functions are NOT satisfied, the EUT shall be retested at K = 1 (the field level required in table clause 1.1) to assess compliance for those other functions.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended.

The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report Version: 1.0

Page 19 of 41

8.6 Performance Criteria Description for Musical tone generating function General

The particular performance criteria for evaluating the musical tone generating function are defined in E.3.2,E.3.3 and E.3.4.

Performance criterion A

Performance criterion A is subdivided according to the type of equipment and its use. Three subgroups corresponding to different equipment types are defined in Table E.1 and have corresponding performance criteria A1, A2 and A3. The relevant subgroup shall be selected by the manufacturer in accordance with the product specification. The description of criteria.

A1, A2 and A3 are presented in Table E.2.

Table E.1 – Subgroups and performance criteria A for the musical tone generating function

Equipment type and use	Subgroup	Performance Criteria
High-end quality suitable for professional use or studio recording	1	A1
Middle grade quality suitable for amateur use or home use	2	A2
Entry grade quality for practice or exercise use	3	А3

Table E.2 - Performance criteria for different subgroups given in Table E.1

Description of degradation	Performance Cr	iteria	
In performance	A1	A2	A3
Specific unintended change in	Not	Not acceptable	Not acceptable
the characteristic of the tone	acceptable		
generated			
1. interruption			
2. stopping (or ceasing)			
3. holding			
4. sudden change in			
amplification			
Specific unintended change in	Not	Not acceptable if	Not acceptable if the
the characteristic of the tone	acceptable	the degradation	manufacturer judges such degradations interfere
generated		is beyond the	with the continuation of
1. frequency		level specified by	playing music
2. harmonic distortion		the manufacturer	
Other changes in the type of	Not	Not acceptable	Not acceptable if the
tone generated	acceptable		manufacturer judges such degradations interfere with the continuation of playing music

The specified degradations shall be perceptible to a listener.

During the test no performance degradation other than that permitted by this table is allowed. After the test

Shenzhen EBO Testing Center
Tel: +86-755-33126608
Email :ebo@ebotest.com Web :www.ebotest.com

Report No.: EBO2208068-E171-1

Report Version: 1.0

Page 20 of 41

the EUT shall operate without performance degradation.

Performance criterion B

During the test, degradation of performance beyond that defined in criterion A1 of Table E.2 is allowed.

However, sudden amplification of tone to a level that exceeds the expected level by more than 6 dB is not allowed.

After the test, normal operation of the EUT shall be self-recovered.

In the case of unintended tone holding caused by a MIDI protocol communication error, the EUT can be reinitialized by the operation of the controls by the user controls in accordance with the manufacturer's instructions.

Due to the nature of the MIDI protocol, it is necessary to modify the performance criterion B to allow user intervention when the unintended tone holding is caused by a missing MIDI communication error (for example missing a 'NOTE OFF' message).

Performance criterion C

Degradation of the performance beyond that defined in criterion A1 of Table E.2 is permitted provided that the normal operation of the EUT can be restored after the test by operator intervention. However, sudden amplification of tone to a level that exceeds the expected level by more than 6 dB is not allowed.

Report Version: 1.0 Page 21 of 41

8.7 Performance Criteria Description for Networking functions

General Requirements for Network functions

Performance criterion A

Where relevant, during the application of the test the network function shall, as a minimum, operate ensuring that:

- established connections shall be maintained throughout the application of the test;
- no change of operational state or corruption of stored data occurs;
- no increase in error rate above the figure defined by the manufacturer occurs. The manufacturer should select the most appropriate performance measurement criteria for the product or system, for example bit error rate, block error rate:
- no request for retry above the figure defined by the manufacturer;
- the data transmission rate does not reduce below the figure defined by the manufacturer;
- no protocol failure occurs;
- the audio noise level at a two-wire analogue interface (supporting telephony) shall satisfy the requirements of Table G.3. The audio level measurements shall be performed at the demodulated frequency of the disturbance using a narrowband filter with a 3dB bandwidth of 100 Hz using the method defined in table clause G.1.4. See G.6.1.

As described in the example given in J.3.5 the networking function is monitored during testing using direct functions specified elsewhere in this document.

If needed to verify the operation of the protocol, the following functions shall be verified as described in Table H.1 when performing the additional spot frequency tests contained in Clause 5:

- · ability to establish a connection,
- · ability to clear a connection.

Where an EUT has supervisory functions they shall not be affected. Elements that should be monitored include, but are not limited to:

- · alarms,
- signalling lamps,
- printer output errors,
- · network traffic rates,
- · network monitor errors,
- · measured network parameters.

Performance criterion B

Established connections shall be maintained throughout the test, or shall self-recover in a way and timescale that is imperceptible to the user.

The error rate, request for retry and data transmission rates may be degraded during the application of the test. Degradation of the performance as described in criterion A is permitted, provided that the normal operation of the EUT is self-recoverable to the condition established prior to the application of the test.

Where required, as defined in Clause 5, the acceptable operation of the function shall be verified at the completion of the test as described in Table H.1, by confirming the following:

• the EUT's ability to establish a connection,

Page 22 of 41

Report Version: 1.0

• the EUT's ability to clear a connection.

During surge testing disconnection is allowed on the analogue/digital data port being tested.

If the EUT is a supervisory equipment, it shall not impact the normal operation of the network being monitored. In addition, any supervisory functions impacted during the period of the test shall return to the state prior to the test. Elements to consider include:

- · alarms,
- · signalling lamps,
- · printer output,
- · network traffic rates,
- · network monitoring.

Performance criterion C

Degradation of performance as described in criteria A and B is permitted provided that the normal operation of the EUT is self-recoverable to the condition immediately before the application of the test, or can be restored after the test by the operator.

Requirements for CPE containing xDSL ports

Performance criterion A

Applicable for the test requirement defined in table clause 2.1

During the swept frequency test, the established connection shall be maintained throughout the testing and the information transferred without any additional reproducible errors or loss of synchronisation. If degradation in performance is observed and the system is adaptive, for example has the capability to automatically retrain in the presence of an interfering signal, then perform the following procedure:

- a) For each range of interfering frequencies in which degradation in performance is observed, three frequencies (beginning, middle and end) shall be identified.
- b) At each of the frequencies identified in step a), the interfering signal shall be applied and the system shall be allowed to retrain.
- c) If the system is able to retrain and then functions correctly for a dwell time of at least 60 s without any additional reproducible errors or loss of synchronisation, then the performance level of the system is considered acceptable.
- d) The frequencies identified in step a) and the data rates achieved in step b) shall be recorded in the test report.

Applicable for the test requirement defined in table clause 2.2

It is important that the modems are able to train in the presence of repetitive impulsive noise and minimize disruption to the end-user where a repetitive impulsive noise source starts after the link has synchronized. Therefore the following procedure and performance criteria shall apply.

The manufacturer shall select the class of impulsive noise protection (INP) to be used for the immunity test and should state this information in the technical documentation and in the test report. The maximum delay shall be set to 8 ms.

In the absence of impulsive noise: The modem shall operate without retraining at its target noise margin with a bit rate value depending on the line attenuation and the stationary noise being present on the line. (The actual value will be between the minimum and maximum bit rate values programmed in the port).

Report Version: 1.0 Page 23 of 41

The impulsive noise source shall then be applied at the required test level.

With the impulsive noise applied: The modem shall operate without retraining and without SES at the bit rate established prior to the application of the impulsive noise. No extra CRC errors shall occur due to the impulsive noise.

Applicable for the test requirements defined in other subclauses

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended.

The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

F.4.3.1 Applicable for the test requirement defined in table clause 2.3

Modems shall withstand the application of the isolated impulsive noise events. The performance criteria defined in Table F.3 shall be applied.

Impulse
duration
ms

0,24
The application of the impulse shall not cause the xDSL link to lose synchronisation.
No CRC errors are permitted.

10
The application of the 5 impulses shall result in less than 75 CRC errors and shall not cause the link to lose synchronisation.

300
The application of the impulse shall not cause the xDSL link to lose synchronisation.

Table F.3 – Performance criteria against impulse duration

Applicable for the test requirements defined in table clauses 2.5 and 4.5

For application of this test to the xDSL port, a repetition rate of 100 kHz (burst length 0,75 ms) shall be used.

For the application of this test to the AC mains power port, a repetition rate of 5 kHz shall be used.

Degradation of the performance as described in criterion A (defined in F.4.2.1) is permitted in that errors are acceptable during the application of the test. However the application of the test shall not cause the system to lose the established connection or re-train. At the cessation of the test, the system shall operate in the condition established prior to the application of the test without user intervention.

After the application of the EFT/B tests to the xDSL or AC mains power port, as defined in table clauses 2.5 and 4.5, the CRC error count shall not have increased by more than 600 when compared to the count prior to the application of the test.

Applicable for the test requirements defined in other subclauses

During the application of the disturbance, degradation of performance is allowed. However, no unintended

Shenzhen EBO Testing Center
Tel: +86-755-33126608
Email :ebo@ebotest.com Web :www.ebotest.com

Report No.: EBO2208068-E171-1

Report Version: 1.0 Page 24 of 41

change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended.

The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Degradation of the performance beyond that defined in criteria A and B is permitted provided that the normal operation of the EUT is self-recoverable to the condition established prior to application of the test or can be restored after the test by the operator.

Report Version: 1.0

Page 25 of 41

8.8 Performance Criteria Description for Audio output function

Performance criterion A

General

During the test the audio output function shall be maintained and the requirements of G.7.1.2 or G.7.1.3 shall be met.

Devices supporting telephony functions

For devices that support telephony functions the limits of Table G.3 shall apply. With respect to Table G.3,

- the interference ratio (electrical or acoustic) shall meet the limits in column 3; or,
- the acoustic level of the demodulated audio shall be less than the limits in column 4; or,
- the digitally coded level of demodulated audio shall be less than limits in column 5; or,
- the analogue level of the demodulated audio shall be less than the limits in column 6.

Table G.3 - Performance criterion A - Limits for devices supporting telephony

Type of	Frequency	Acoustic or electrical interference ratio	Equivalent direct measurement			
immunity test	range MHz		dB(SPL)	Digital dBm0	Analogue dBm	
Conducted ^a	0,15 to 30	–20 dB	55	-50	– 50	
	30 to 80	–10 dB	65	-40	-40	
Radiated	80 to 1 000	0 dB	75	-30	-30	

^a At the step in the frequency range, the lower limit shall be applied.

The equivalent direct measurement values are presented to show the equivalency of the interference ratio in comparison to a direct measured value. These values may be used if the direct measurement method of the test is used.

The values within this table are aligned with CISPR 24, noting that the test levels are different between this document and CISPR 24.

For terminals connected to digital wired network ports (such as Ethernet, ISDN), measurements of the demodulated 1 kHz may be performed on a remote AE, ideally of the same design.

NOTE The amplitude demodulation disturbances will arise, almost invariably, from semi-conductor junctions behaving as inadvertent square law detectors. This means that for a 10 dB increase in the applied test level, for example, from 1 V to 3 V, the demodulated line noise will increase by 20 dB. This 20dB offset was used to derive the values in Table G.3.

For all other devices

The measured acoustic interference ratio and/or the measured electrical interference ratio during the test shall be –20 dB or better.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

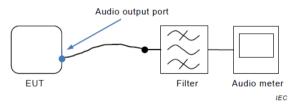
After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the

Report Version: 1.0

Page 26 of 41

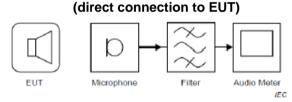
manufacturer, when the equipment is used as intended.

The performance level may be replaced by a permissible loss of performance.


If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.


Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Test setup examples

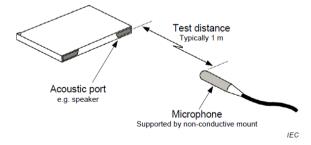

The filter is the audio filter specified in G.6.1 and is typically incorporated into the audio meter. Additional filtering might be necessary to ensure that the RF disturbance signal does not interfere with the measurement.

Figure G.1 – Example basic test setup for electrical measurements

The filter is the audio filter specified in G.6.1 and is typically incorporated into the audio meter. Additional filtering might be necessary to ensure that the RF disturbance signal does not interfere with the measurement.

Figure G.2 – Example basic test setup for acoustic measurements

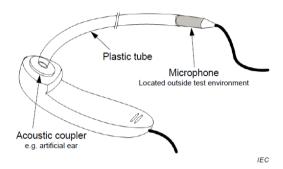
The microphone is connected via the cable to a suitable amplifier. Ensure that there is minimal acoustic loss between EUT and microphone.

Figure G.3 - Example test setup for acoustic measurements on loudspeakers

Report No.: EBO2208068-E171-1
Report Version: 1.0

Page 27 of 41

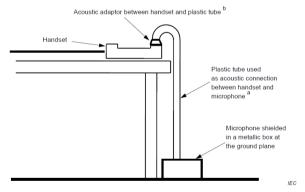
Acoustic coupler
e.g. artificial ear
Supported by non-conductive mount


Acoustic coupler
e.g. artificial ear
Supported by non-conductive mount

Supported by non-conductive mount

NOTE 1 The microphone is connected via the cable to a suitable amplifier.

NOTE 2 This setup cannot be suitable for radiated testing. See G.6.3.

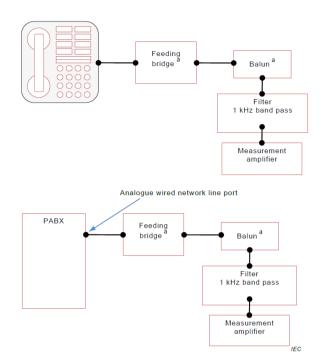

Figure G.4 – Example test setup for on-ear acoustic measurements

NOTE 1 The microphone is connected via the cable to a suitable amplifier.

NOTE 2 This setup is suitable for radiated immunity testing. See G.6.3

Figure G.5 – Example test setup for on-ear acoustic measurements, microphone located away from earpiece transducer

NOTE This set up is suitable for radiated immunity testing. See G.6.3.


Figure G.6 – Example test setup for measuring the sound pressure level from the acoustic output device of a telephone handset

^a The acoustic measurement procedure compensates for the acoustic properties of the tube. Typically, the tube has an inner diameter of 15 mm, an outer diameter of 19 mm, and a total length of 1,5 m.

^b Conically formed adaptor which is connected acoustically to the various forms of handsets with some type of soft rubber. This stable coupling of the handset to the acoustical tube should not be changed between establishing the reference level and measuring the demodulated levels.

Report Version: 1.0

Page 28 of 41

^a The feeding bridge current and the balun impedance are to be chosen according to the intended purpose of the EUT. In addition the feeding bridge may provide the power required for the MME to operate.

Figure G.7 – Example test setups for measuring the demodulation on analogue wired network lines

Report Version: 1.0 Page 29 of 41

8.9 Performance Criteria Description for Telephony function

Table H.1 defines the performance criteria for various telephony functions that shall be exercised (or operated) in the presence of the disturbances specified in Table 1 to Table 4.

Table H.1 – Telephony functions, performance criteria

Function to be	Performance criteria				
exercised	Α	В	С		
Establish new communication	At the additional spot frequency tests a, c	Performed before and after the application of the test or disturbance	Performed before and after the application of the test or disturbance		
Maintain established communication	Yes In addition, the requirements of Annex G for the audio output function shall be satisfied °	Yes ^b	No		
Terminate established communication	At the additional spot frequency tests ^{a, c}	Performed before and after the application of the test or disturbance	Performed before and after the application of the test or disturbance		

Communication refers to a telephone call or other form of voice connection.

^a Applicable to TTE with a dial function that provides dedicated emergency service/safety of life call capability. Where the EUT does not provide this functionality, this limitation shall be stated in the equipment user manual.

^b Communication shall be established prior to the application of the disturbance, the communication shall be maintained and the quality of that communication (for example, volume setting, the level of background noise) shall be maintained after completion of the test or disturbance.

^c Where defined in Clause 5 (for the tests in Table 1 to Table 4), these functional tests shall be performed during the additional spot frequency tests.

Page 30 of 41

Report Version: 1.0

8.10 Electrostatic Discharge

Test Requirement:	EN 55035				
Test Method:	EN 61000-4-2				
Discharge Voltage:	Contact Discharge: ±4kV				
	Air Discharge: ±8kV				
	HCP/VCP: ±4kV				
Polarity:	Positive & Negative				
Number of Discharge:	Minimum 10 times at each test point.				
Discharge Mode:	Single Discharge				
Discharge Period:	1 second minimum				
Performance Criterion:	В				
Test setup:	Electrostatic Discharge EUT VCP(0.5m*0.5m) 470K ohm Non-Conducted Table Ground Reference Plane				

Test Procedure:

Air discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure was repeated until all the air discharge completed

2. Contact Discharge:

The test was applied on conductive surfaces of EUT. the generator was re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. the tip of the discharge electrode was touch the EUT before the discharge switch was operated.

3. Indirect discharge for horizontal coupling plane

At least 10 single discharges shall be applied at the front edge of each HCP opposite the centre point of each unit of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

Consideration should be given to exposing all sides of the EUT.

4. Indirect discharge for vertical coupling plane

At least 10 single discharges were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X

Report Version: 1.0

Page 31 of 41 Email:ebo@ebotest.com Web:www.ebotest.com

	0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.					
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar					
Test mode:	Refer to section 6 for de	etails				
Test Instruments:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Reco	rd:							
Toot points:	I: Metal shell, Screw							
Test points:	II: Seams, Indicator ligh	nt, All ports						
Direct discharge								
Discharge	Discharge _ Observations							
Voltage (KV)	Type of discharge	Test points	(Performance Criterion)	Result				
± 4	Contact	1	А	Pass				
± 8	Air	II	A	Pass				
Indirect discharge								
Discharge Voltage (KV)	Type of discharge	Test points	Observation Performance	Result				
± 4	HCP-Bottom/Top/ Front/Back/Left/Right	Edge of the HCP	А	Pass				
± 4	VCP-Front/Back /Left/Right	Center of the VCP	А	Pass				

Remark:

A: No degradation in performance of the EUT was observed.

Page 32 of 41

Report Version: 1.0

8.11 Radiated Immunity

Test Requirement:	EN 55035
Test Method:	EN 61000-4-3
Frequency range:	80MHz to 1GHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz
Test Level:	3V/m
Modulation:	80%, 1kHz Amplitude Modulation
Performance Criterion:	A
Test setup:	Camera Antenna Tower Artenna Tower Ground Reference Plane Generator Amplifier
Test Procedure:	 For table-top equipment, the EUT was placed in the chamber on a non-conductive table 0.8m high. For arrangement of floor-standing equipment, the EUT was mounted on a non-conductive support 0.1m above the supporting plane. For human body-mounted equipment, the EUT may be tested in the same manner as table top items. If possible, a minimum of 1 m of cable is exposed to the electromagnetic field. Excess length of cables interconnecting units of the EUT shall be bundled low-inductively in the approximate center of the cable to form a bundle 30 cm to 40 cm in length. The EUT was initially placed with one face coincident with the calibration plane. The EUT face being illuminated was contained within the UFA (Uniform Field Area). The frequency ranges to be considered were swept with the signal modulated and pausing to adjust the RF signal level or to switch oscillators and antennas as necessary. Were the frequency range was swept incrementally, the step size was not exceed 1 % of the preceding frequency value. The dwell time of the amplitude modulated carrier at each frequency was not be less than the time necessary for the EUT to be exercised and to respond, and was not less than 0,5 s. The test normally was performed with the generating antenna facing each side of the EUT. The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally. The EUT was performed in a configuration to actual installation conditions, a video camera and/or a audio monitor were used to

Report No.: EBO2208068-E171-1
Report Version: 1.0

Page 33 of 41

	monitor the performance of the EUT.				
Test environment:	Temp.: 25°C Humid.: 52% Press.: 1012mbar				
Test Instruments:	Refer to section 6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Record:

Frequency	Level	Modulation	Antenna Polarization	EUT Face	Observations (Performance Criterion)
			V	Frant	А
			Н	Front	А
			V	Rear	А
			Н	Real	А
		1 kHz,	V	Left	А
80 MHz-1 GHz	3 V/m	80 % Amp. Mod,	Н	Leit	А
00 MH2-1 GH2	3 7/111	1% increment, dwell	V	Right	А
		time=2seconds	Н	Rigiti	А
			V	_	А
			Н	Тор	А
			V	Bottom	А
			Н		А
			V	Front	А
			Н	FIOIIL	A
			V	Rear	А
			Н	Real	А
		1 kHz,	V	Left	А
1800MHz	3 V/m	80 % Amp. Mod, 1% increment, dwell	Н	Leit	A
		time=2seconds	V	Diaht	А
			Н	Right	А
			V	Тор	А
			Н	ιορ	А
			V	Bottom	А

Shenzhen EBO Testing Center Tel: +86-755-33126608

Email:ebo@ebotest.com Web:www.ebotest.com

Report No.: EBO2208068-E171-1

Page 34 of 41

Report Version: 1.0

The state of the s					T
			Н		А
			V	Frant	А
			Н	Front	А
			V	Door	А
			Н	Rear	А
		1 kHz,	V	1.54	А
0000011	0.1//	80 % Amp. Mod,	Н	Left	А
2600MHz	3 V/m	1% increment, dwell	V	D'AL	А
		time=2seconds	Н	Right	А
			V	T	А
			Н	Тор	А
			V	Dettern	А
			Н	Bottom	А
			V	Facat	А
			Н	Front	А
			V	Door	А
			Н	Rear	А
		1 kHz,	V	Left	А
2500MI-	2.1//~	80 % Amp. Mod,	Н		А
3500MHz	3 V/m	1% increment, dwell	V	Diabt	А
		time=2seconds	Н	Right	А
			V	Ton	А
			Н	Тор	А
			V	Dottors	А
			Н	Bottom	А
			V	Frant	А
		1 kHz,	Н	Front	А
5000MHz	3 V/m	80 % Amp. Mod, 1% increment, dwell	V	Doc	А
		time=2seconds	Н	Rear	А
			V	Left	А

Shenzhen EBO Testing Center Tel: +86-755-33126608

Email:ebo@ebotest.com Web:www.ebotest.com

Report No.: EBO2208068-E171-1

Report Version: 1.0 Page 35 of 41

Н		А
V	Diaht	А
Н	Right	А
V	Tan	А
Н	Тор	А
V	Dottom	А
Н	Bottom	А

Remarks:

A: No degradation in the performance of the E.U.T. was observed.

Report Version: 1.0

Page 36 of 41

8.12 Electrical Fast Transients

8.12.1 Signal ports and Telecommunication ports

EN 55035	EN 55035				
EN 61000-4	EN 61000-4-4				
0.5KV	0.5KV				
Positive & N	legative				
Rise time=5n	Rise time=5ns, Duration time=50ns;				
Burst Durati	Burst Duration=15ms, Burst Period=300ms;				
Repetition F	Repetition Frequency=5KHz				
2 minute pe	r level & p	olarity			
Criterion B	Criterion B				
EMC Grounding cable	Tester No	n-conducted tab	EUT	10¢m	e Plane
Temp.:	26 °C	Humid.:	54%	Press.:	1 012mbar
-	<u> </u>	ails	<u> </u>		. 012
Refer to secti	on 5.3 for d	etails			
Pass					
	EN 61000-4 0.5KV Positive & N Rise time=5n Burst Durati Repetition F 2 minute pe Criterion B EMC **Geo Buipuno 50 **Geo Bui	EN 61000-4-4 0.5KV Positive & Negative Rise time=5ns, Duration Burst Duration=15ms, Repetition Frequency= 2 minute per level & portion B EMC Tester Seround Reserved Ground Reserved Refer to section 6 for det Refer to section 5.3 for determine the section 5.3 for determin	EN 61000-4-4 0.5KV Positive & Negative Rise time=5ns, Duration time=50ns; Burst Duration=15ms, Burst Period= Repetition Frequency=5KHz 2 minute per level & polarity Criterion B Capacitive coupling clar EMC Tester Non-conducted table Ground Reference Plane Temp.: 26 °C Humid.: Refer to section 6 for details Refer to section 5.3 for details	EN 61000-4-4 0.5KV Positive & Negative Rise time=5ns, Duration time=50ns; Burst Duration=15ms, Burst Period=300ms; Repetition Frequency=5KHz 2 minute per level & polarity Criterion B Capacitive coupling clamp Telecommun EMC Tester Non-conducted table Ground Reference Plane Temp.: 26 °C Humid.: 54% Refer to section 6 for details Refer to section 5.3 for details	EN 61000-4-4 0.5KV Positive & Negative Rise time=5ns, Duration time=50ns; Burst Duration=15ms, Burst Period=300ms; Repetition Frequency=5KHz 2 minute per level & polarity Criterion B Capacitive coupling clamp Telecommunication line EMC Tester Non-conducted table Ground Reference Temp.: 26 °C Humid.: 54% Press.: Refer to section 6 for details Refer to section 5.3 for details

Measurement Record:

Lead under Test	Level (kV)	Coupling Direct/Clamp	Observations (Performance Criterion)	Result
Signal line	± 0.5	Clamp	А	Pass

Remark:

A: No degradation in performance of the EUT was observed.

Report Version: 1.0 Page 37 of 41

8.13 Surges

8.13.1 Signal ports and Telecommunication ports

0.13.1	oignai ports and releconnila	mount porto					
	Test Requirement:	EN 55035					
	Test Method:	EN 61000-4-	-5				
	Test Level:	1kV					
	Polarity:	Positive & Negative					
	Generator source impedance:	42Ω (line-earth coupling)					
	Test signal specification:	Rise time=10us, Duration time=700us;					
		Test Interval	: 60s betwe	een each sur	ge;		
	No. of surges:	5 positive, 5 negative					
	Performance Criterion:	Criterion C					
	Test setup:	EMC Grounding cable	Nor	n-conducted tal	EU1	_	nce Plane
	Test environment:	Temp.:	26 °C	Humid.:	53%	Press.:	1 012mbar
	Test Instruments:	Refer to section	on 6 for deta	ils			
	Test mode:	Refer to section	on 5.3 for de	tails			
	Test results:	Pass		-		-	

Measurement Record:

Wieasurement is	leasurement Record.								
Location	Level(kV)	Pulse No	Surge Interval	Observations (Performance Criterion)	Result				
Signal port	± 1	5	60s	А	Pass				

Remark:

A: No degradation in performance of the EUT was observed.

Report Version: 1.0

Page 38 of 41

8.14 Conducted Immunity

8.14.1 Signal ports and Telecommunication ports

= .	-							
Test Requirement:	EN 55035							
Test Method:	EN 61000-4-6							
Frequency range:	0.15MHz to 80MHz							
Test Level:	3V rms							
Performance Criterion:	Criterion A							
Test setup:	Shielding Room Signal Generator Power Amplifier Non-conducted Table Fixed Pad EM Clamp Fixed Pad Ground Reference Plane Ground Reference Plane							
Test environment:	Temp.:	24 °C	Humid.:	51%	Press.:	1 012mbar		
Test Instruments:	Refer to section 6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Pass							
·								

Measurement Record:

Frequency	Injected Position	Level	Modulation	Observations (Performance Criterion)	Result
150kHz to 80MHz	Clamp	3Vrms	1 kHz, 80 % Amp. Mod, 1 % increment, dwell time=2seconds	А	Pass

Remark:

A: No degradation in performance of the EUT was observed.

Report Version: 1.0

Page 39 of 41

9 Photographs of the EUT

Shenzhen EBO Testing Center Tel: +86-755-33126608

Email:ebo@ebotest.com Web:www.ebotest.com

Report No.: EBO2208068-E171-1

Page 40 of 41

Report Version: 1.0

Shenzhen EBO Testing Center Tel: +86-755-33126608

Email:ebo@ebotest.com Web:www.ebotest.com

Report No.: EBO2208068-E171-1

Page 41 of 41

Report Version: 1.0

Remark: Results & photo(s) of this report refer to test report EBO2208068-E171
-----End-----